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ABSTRACT

We have cloned cDNAs encoding two variants of the
elongation factor for protein synthesis in Xenopus
laevis, called EF-1cx. One of these (42Sp5O) is
expressed exclusively in immature oocytes. It is one
of two protein components of a 42S RNP particle that
is very abundant in previtellogenic oocytes. The 42S
RNP particle consists of various tRNAs, 5S RNA,
42Sp5O and a 5S RNA binding protein (42Sp43). A
major function served by 42Sp50 appears to be the
storage of tRNAs for later use in oogenesis and early
embryogenesis. The second EF-1lc variant (EF-loeO) is
expressed mainly in oocytes but transiently in early
embryogenesis as well. Its mRNA cannot be detected
after neurulation in somatic cells. EF-laO is closely
related to a third EF-la (EF-1c S), discovered originally
by Krieg et al. (1). EF-laS is expressed at low levels
in oocytes but actively in somatic cells. The latter two
proteins are very similar to known eukaryotic EF-lce
from other organisms and presumably function in their
respective cell types to support protein synthesis.

INTRODUCTION

Two abundant RNP storage particles ('thesaurisomes') exist in
previtellogenic oocytes of anurans and teleosts (2, 3). In Xenopus
laevis the smaller particles (7S) have a simple composition (4).
They contain one molecule of 5S RNA and one molecule of the
38 kDa protein TFIHA which has a dual function. This protein
is involved in the storage of 5S RNA in immature oocytes (4).
It also acts as a positive transcription factor which is required
for efficient and accurate expression of 5S RNA genes (5, 6).
The larger RNP storage particle inX laevis has a sedimentation

coefficient of 42S and comprises four subunits each of which
contains one molecule of 5S RNA, three molecules of tRNA,
one molecule of a 43 kDa protein, known as 42Sp43 or thesaurin
b, and two molecules of a 50 kDa protein known as 42Sp5O or

thesaurin a (3). This protein has also been referred to as 42Sp48
(7). 5S RNA is associated primarily with 42Sp43 (8, 9), whereas
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tRNA is associated with the larger particle protein (42Sp5O; 8).
The interactions that hold the particle together are unknown.
The 42S particles of X. laevis have a metabolic activity. They

can participate in protein synthesis in vitro by supplying the

ribosomes with aminoacyl tRNA (10). After peptide bond
formation, a discharged tRNA molecule is incorporated into a

42S particle, reacylated, and stored for use in another round of
peptide bond formation. The tRNA in 42S particles is fully
charged in vivo (11, 12). Purified 42S particles not only take
up and reacylate tRNA (11, 12), but can directly transfer
aminoacyl tRNA to ribosomes in a GTP- and mRNA-dependent
reaction that mimics the well-characterized role of elongation
factor EF-lc in protein synthesis (7).
More recently, 42Sp5O was found to be antigenically related

to EF-la (7), and partial amino acid sequencing of 42Sp5O
confirmed this relationship (13i). We present here the sequence

of a cDNA clone encoding X. laevis 42Sp5O. The deduced amino
acid sequence of this protein is similar to that of EF-la from
other eukaryotes, confirming its identity as a member of the
EF-lac family. (For a recent compilation of references to
sequences of EF-lc from a variety of species, see 14). The
mRNA for 42Sp5O is detected only in oocytes.
A second cDNA (EF-lIcO) encoding a member of the EF-la

family has been cloned. Its mRNA is abundant in oocytes and
after transient expression in early embryos progressively
disappears by the end of neurulation. Its mRNA is not detectable
in adult liver. Embryos and adult cells have been shown to contain
mRNA encoding a third form of EF-lcr that has been
characterized recently by Krieg et al. (1). We propose to name
this protein EF-laS.

MATERIALS AND METHODS
Materials
Previtellogenic oocytes (stage I; 15) were obtained by digesting
ovaries of immature females with collagenase (1 mg/ml in 100

mM potassium phosphate buffer, pH 7.4). Vitellogenic oocytes
(stages I-V) were dissected manually from ovaries of mature
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GGTTTGTTATGAAGCCTCCTCAGGTTGTCCGAGTAGGGACAAAGAAAACATCG -241

TTTGTCAACTTCACTGATATCTGCAAACTGTTACATCGTCAGCCGAAACACTTGCTGGCCTTCTTGTTAGCTGAATTGGGGACATGTGGCTCTATAGATGGTAACAACCAGTTAGTCATC -121

AAAGGCAGATTCCAGCAGAAGCAAATAGAGAACGTTCTAAGAAGATATATCAAGGAATACGTGACTTGTCACACCTGCCGATCTGAG6TAAGTAAGTGGTTAGTAGGTTACTCGGTGCAAC -1
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Figure 1. Nucleotide sequence of the cDNA clone X142Sp5O and deduced amino acid sequence of 42Sp5O (thesaurin a) protein. The cDNA sequence contains 293

bases of 5' untranslated sequence, 1389 bases of coding sequence and 518 bases of 3' untranslated sequence. The latter sequence contains 3 putative polyadenylation

signals (underlined), but no poly(A) tract. The sequence of 3 peptides derived from 42Sp5O protein (13) is overlined.

females. The cells were rinsed in Barth's medium (16), collected
in batches of 50-100 and frozen in liquid nitrogen. Embryos
were staged according to the normal table of Nieuwkoop and
Faber (17) and immediately processed for RNA purification.

Purification of RNA and analysis of transcripts
Total RNA was purified from liver, ovaries, oocytes and embryos
by the LiCl-urea method (18). Poly-A+ RNA was prepared by
oligodT chromatography according to standard procedures (19).
An amount of RNA that corresponds to the content of 5-10
oocytes or embryos was used for Northern blots.

Aliquots of total or poly(A)+ RNA were fractionated in 1%
agarose gels containing formaldehyde (19), transferred to

nitrocellulose membranes or nylon, and hybridized with the 32p-
labeled insert of various cDNA clones. Hybridization was carried

out overnight at 42°C in 5 x SSPE, 50% formamide (19). The
membranes were washed at 42°C in 0.1 x SSPE, dried and

autoradiographed.

Screening of cDNA libraries
About 106 clones from an oocyte cDNA library in lambda gtlO
(20) were screened with a X. laevis EF-la cDNA probe (1). A
dozen positive clones were recovered. These clones could be
classified in three groups according to the intensity of the
hybridization signals with EF-la cDNA. Two clones (X17 and

X18) giving a signal of intermediate intensity were selected and

analyzed further. Both of them contained an insert of about 1300

bp which was similar in sequence (85% identical residues) with

the 3' part of EF-laS cDNA (1). The 5' part of clone X18 was

subcloned and used as a probe to search for longer cDNA clones

in the lambda gtlO library. Two clones were obtained with inserts

of 1493 and 1424 bp, respectively. The 1493 bp clone (X19) is

a longer version of X17 and X18. It is described here as EF-IaO.
The 1424 bp clone (XIIO) is slightly different in sequence from

EF-IaO. The X19 (EF-lcxO) and Xl1O (EF-lcaO1) cDNAs might

be due to polymorphism of a single gene or derived from two

different genes.
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Figure 2. Nucleotide sequence of cDNA clone X19 and derived amino acid sequence of EF-laO protein. The clone contains 28 bases of 5' untranslated sequence,
1383 bases of coding sequence and 63 bases of 3' untranslated sequence. A polyadenylation signal (underlined) lies 18 bases upstream of a 19 base poly(A) tract.
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MGKEK THIK IVV IGHVDSGK STT TGHLI YKCGG IDKR TIEKFEKEAAEMGKGSFKYAWVL DKLKAERERG I TIDI SLWKFETSKYYV TI IDAPGHRDF IKNMI TG TSQADCAVLI VAAGV
MGKEK IHI NI VVIGHVDSGKST TTGHL IYKCGG IDKRT IEKFEKEAAEMGKGSFKYAWVL DKLKAERERG I TIDI SLWKFETGKF YI T IIDAPGHRDFIKNMI TGTSQADCAVL IVAGGV

MTDKAPQKTHLNIVI IGHVDSGKSTTTGHLIYKCGGFDPRALEKVEAAAAQLGKSSFKFAWIL DKLKAERERGITIDISLWKFQTNRFTITIIDAPGHRDFIKNMITGTSQADVALLVVSAAT
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GEFEAG ISKNGQT REHALLAYTLGVKQLI VG INKMDSTEPPYSQK RYEE IVKE VSTY IKK IGY NPDT VAFVP ISGWNGDNMLEPSPNMPWFKGWK ITRKEGSGSGTTLLEALDC ILPPSR
GEFEAGI SKNGQTREHALLAFTLGVKQL IIGVNKMDSTEPPFSQKRFEE ITKEVSAYIKK IGYNPATVPFVPI SGWHGDNMLEASTNMPWFKGWK IERKEGNASGVT;;;EALDCI IPPQR
GEFEAGV SRNGQT REHALLAYTMGVKQL IVCVNKMDL TDPPYSHKRFDEVV RNVMVYLKK IGYNPAT IPFV PVSGWTGENISSPSQKMGWFKGWKVKRKDGFTKGQSLLE VLDALVPPV R
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PTDKPLRLPCQDVYKIGGIGTVPVGKRVETGVIKPGMVVTFAPVNVTTEVKSVEMHHEAL;EAVPGDNVGFNVKNVSVKDVRRGNVAGDSKNDPPMEAGSFTAQVI ILNHPGQIGAGYAPV
PTAKPLRLPLQDVYK IGGIGT VPVGRVETGVLKPGMI VTFAPSNVTTEVKSVEMHHEALQ EALPGDNVGFNVKNISVKDIARRGNVAGDSKNDPPMQAGSFTAQV IILNHPGQI SAGYAPV
PANKPLRLPP AYVYK IGG IGTVPVGK IETG ILKPGMT ISFAPSGFSAEVKS IEMHHEPLQ MAFPGFN IGFNVKNIAAKSLKRGNVAGNSK SDPP TEASSFTAQV IILNHPGF IKAGYSPV
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LDCHTAHIACKFAELKEK IDRRSGKKLEDNPKFLKSGDAAIVDMIPGKPACVESFSDYPP LGRFAVRDMRQTV AVGV IKAVEKKAAGSGKV TKSAQKAAKTK
LDCHTAHIACKFAELKQKIDRRSGKKLEDDPKFLKSGDAAIVEMIPGKpMCvESFSDYPPLGRFAVRDMRQTVAVGVIKGVDKKAASSGKVTKSAVKAGK-K
IDCHTAHITCQFAELQEKIDRRTGKKLEDNPGLLKSGDAAI TLKPIKPFCVERFFDYPPLGRFAARDLKQTVAVGVVKSVEHKAGAAAR--RQVQKPVLVK

Figure 3. Alignment of amino acid sequences of EF-laS (1), EF-laO (Fig. 2) and 42Sp5O (Fig. 1). Colons indicate identical residues. Points indicate conservative
substitutions (22).

The clone encoding 42Sp5O was identified from a lambda gtl 1
expression library by means of a polyclonal antibody prepared
against gel purified 42Sp5O.

DNA sequencing
DNA sequences were determined for both strands by the chain
termination method of Sanger et al. (21). Overlapping single-
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Figure 4. RNA blot analysis of 42Sp50 expression in liver and ovary. Lane 1,
2 ,sg of poly(A)+ RNA from liver; lane 2, 64 Ag of total RNA from liver; lane
3, 2 jg of poly(A)+ RNA from immature ovaries (including only stage I
oocytes); lane 4, 9 Ag of total RNA from immature ovaries (inclucing only stage
I oocytes); lane 5, 22 Ag of total RNA from immature ovaries (including stages
I and H oocytes); lane 6, 22 gg of total RNA from mature ovaries (including
stages I to VI oocytes). The RNA was firationated on a 1% agarose gel containing
formaldehyde, transferred to a nitrocellulose membrane and hybridized with a
labeled 42Sp50 cDNA probe. After washing and drying, the filter was exposed
to an X-ray film for 24 hr. The position of 28S and 18S RNA (4000 and 1800
bases, respectively) is indicated.

stranded fragments of the original cDNA inserts were generated
as described in the Cyclone kit (EBI), and sequenced by extension
of M13 standard or reverse primers.

RESULTS
Cloning and sequencing of 42Sp5O and EF-laO
The cDNA encoding 42Sp5O was isolated from a lambda gtl 1
expression library prepared from ovary mRNA. Polyclonal
antibody was prepared from gel purified p5O. The clone can be
identified unequivocally as encoding 42Sp5O since it contains the
sequences of three polypeptides derived from 42Sp5O. (13)
(Fig. 1).
The cDNA encoding EF-laG was identified from a lambda

gtlO library by its hybridization with the cDNA of EF-IaS. Its
sequence is shown in Fig. 2. Sequences of the three different
EF-la proteins, deduced from their cDNA sequence, are
compared in Fig. 3. The somatic and oocyte EF-la (EF-lcGO
and EF-laS) are closely related with 91% of their residues
identical, while the RNA storage particle protein 42Sp5O is much
more diverged having only 69% identical residues. The extreme
N and C termini of 42SpSO are completely different from the
two other proteins.

Expression of the three EF-la genes during development
We compared the expression of the three genes in oogenesis and
throughout embryonic development by Northern blots. The
mRNA encoding 42Sp5O is most abundant in immature oocytes

OOCYTEb EMBRYOS
II..4.2.3.

.4

; 1§|i22' 4 3': 3 ,

e -,V

-4
F -:

A

Figure 5. RNA blot analysis of EF-laO (A) and EF-lasS (B) expression in oocytes and embryos. All lanes contain total RNA from 10 oocytes or 5 embryos, except
those labeled L and 0 which contain 0.4 tg of poly(A)+ RNA from liver and from mature ovaries, respectively. The position of EF-laO and EF-lcS mRNA
is indicated. The autoradiograms presented are 20 hr (A) and 8 hr (B) exposures.
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of different tRNAs (7). However, this protein has the novel
property of interacting with the other components of the 42S RNP
particle that is unique to oocytes (3). At least one function of
this particle is the storage of 5S RNA and various tRNAs (23).
Presumably, the divergence of 42Sp5O from the more traditional
and highly conserved forms of EF-lcx reflects, in part, this
different oocyte-specific function.
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A B

Figure 6. RNA blot analysis of EF-laO and EF-laS expression in liver and
ovary. Lane L, 22 jig of total RNA from liver; lane 0, 2 ug of poly(A) + RNA
from imaure ovaries (including only stage I oocytes). The RNA was fractionated

on a 1 % agarose gel as in Fig. 4, transferred to a nitrocellulose membrane and
hybridized with a labeled EF-IacO probe (A). After a 24 hr exposure to an X-ray
film, the filter was hybridized under the same conditions with an EF-caS probe
and autoradiographed for another 24 hr (B).

containing stage I and stage II oocytes, detectable in mature
oocytes, but undetectable in liver (Fig. 4). Experiments (not
shown) demonstrate that the mRNA for 42Sp5O is present only
in stage I oocytes. The niRNA for EF-lctO accumulates during
oogenesis, is transiently expressed after the mid blastula
transition, but then disappears after the end of neurulation (Fig.
5A). Adult liver has no detectable mRNA for EF-lIaO (Fig. 6).
The third member of the EF-lct family is EF-laS. Its mRNA
migrates more slowly than that of EF-laO so that mixtures of
the two can be distinguished. We confirm the results of Krieg
et al. (1) who demonstrated that this gene is expressed very
actively at the mid blastula transition of embryogenesis and
continues to be expressed in somatic cells (Fig. SB). We also
detect small amounts of this mRNA in oocytes. Thus, it is clear
that these three related genes are regulated very differently in
development.
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DISCUSSION

By virtue of their similarity to the other known EF-Ia proteins
sequenced from a variety of eukaryotes, we conclude that
EF-laO and EF-laS perform the well-known functions of
transferring aminoacyl tRNA to the ribosome, but presumably
in different cell types. These two closely related Xenopus proteins
are 75-90% similar in their amino acid sequence to EF-la's
from mammalian and other eukaryotic sources. The more
distantly related protein 42Sp5O shares the ability to bind a variety
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