Supplemental Material

Drug Metabolism and Disposition

Respective roles of CYP2A5 and CYP2F2 in the Bioactivation of 3-Methylindole in Mouse Olfactory Mucosa and Lung: Studies Using *Cyp2a5*-null and *Cyp2f2*-null Mouse Models

Xin Zhou, Jaime D'Agostino, Lei Li, Chad D. Moore, Garold S. Yost and Xinxin Ding

Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (XZ, JD, LL, XD) and Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah (CDM, GSY)

DMD #44081

Legends for Supplemental Figures

Fig. S1. Substrate-velocity curves for 3-methylindole metabolite formation by olfactory mucosa (OM) and lung microsomes from wild-type (WT), *Cyp2a5*-null, and *Cyp2f2*-null mice. The calculated kinetic parameters are shown in Tables 1 and 2.

DMD #44081

Supplemental TABLE 1

Ion list used for 3-methylindole metabolite detection in multiple ion monitoring-

Molecular Ion (MH ⁺)	Species	Mass Shift	Reaction
132	Parent	0	
148	Metabolite	16	+ 0
164		32	+ 20
130		-2	+ O, - H_2O (on-source loss)
437	GSH-conjugate	305	+ GSH
453		321	+ GSH+O-2H
455		323	+ GSH+O

dependent enhanced product ion scan

