Supporting Information

Avila et al. 10.1073/pnas.1117689109

Fig. S1. The *D. melanogaster* lower female RT (SSOs and uterus). (*A*) Nomarski image at low magnification of a mated female RT. (*B*) Magnified Nomarski image showing the anterior portion of the lower female RT. (*C*) Magnified bright-field image of the anterior lower RT. Images were taken in the presence (*C*) and absence (*A* and *B*) of a coverslip. Pv, parovaria; Sp, spermathecae; SR, seminal receptacle. The ovaries are located anterior to the uterus. One (of two) parovaria is shown in *A*–*C*, and one (of two) spermatheca is shown in *A* and *B*.

Fig. 52. Sterile, egg-retention mutants do not excessively retain stored sperm. (*A*) Distribution of the uterine conformational stages at 35 min after the start of mating in $loj^{04026/} loj^{00898}$ transheterozygous mutant females compared with their sibling controls [Wilcoxon test (Rank sums), P = 0.38; $N_{loj} = 37$, $N_{TM3} = 46$]. Total sperm stored in the SSOs (*B*), in the seminal receptacle (*C*), and in the spermathecae (*D*) in loj mutant females compared with their sibling controls. The loj mutant and control females stored similar numbers of total and spermathecal sperm at 6 h postmating, although significantly more sperm are stored in the loj mutants' SRs at 6 h postmating (significant difference indicated by *; *B*: t = -1.69, df = 26, P = 0.103; C: t = -2.73, df = 32, P = 0.01; D: t = -1.47, df = 27, P = 0.16). Examination of sperm depletion from storage in loj mutant females showed that the total number of stored sperm (*B*: $F_{1,58} = 52.53$, P < 0.0005), as well as sperm stored in the spermathecae id difference loj mutant depleted at significantly greater rates than in control females. Sperm depletion from storage in the spermathecae id difference indicated by *, 4 di t = 1.12, df = 25.5, P = 0.28; *t test, 10 di t = -2.93, df = 34, P = 0.006). Significance of the genotype factor, indicating differences in sperm depletion between loj mutant and control females, is reported in the figure as follows: * = 0.005 < P < 0.05 (an additional explanation of the statistical analysis is provided in *Materials and Methods*). Sp, spermathecae; SR, seminal receptacle. Sample sizes for sperm counts range from n = 9-20 (Table S1).

Fig. S3. Expression of OAMB in the seminal receptacle (*A*), spermathecae (*B*), and parovaria (*C*) in *oamb*-GAL4/UAS-mCD8-GFP females. (*Left*) *oamb*-driven GFP (green) expression alone. (*Right*) GFP overlayed with phalloidin-stained muscle (magenta). Oviduct epithelium, indicated by an asterisk (*), expresses GFP highly, but the seminal receptacle and spermathecae do not show repeatable high levels of expression. Occasionally, spermathecal epithelial cells express low levels of GFP (arrows). The parovaria show high levels of GFP expression. The parovaria stalk in *B* is labeled (double arrow). (Scale bar: 25 μm.)

Table S1.	Sample si	zes of s	perm co	ounts by	genotype	and time	point
-----------	-----------	----------	---------	----------	----------	----------	-------

Fig.	Sperm storage	Time AM, d	Female genotype	Sample size
1 <i>B</i>	Total	0.25	tβh ^{M18} /FM7	13
1 <i>B</i>	Total	0.25	tβh ^{M18} /tβh ^{M18}	15
1 <i>B</i>	Total	4	tβh ^{M18} /FM7	15
1 <i>B</i>	Total	4	tβh ^{M18} /tβh ^{M18}	14
1 <i>B</i>	Total	10	tβh ^{M18} /FM7	11
1 <i>B</i>	Total	10	tβh ^{M18} /tβh ^{M18}	11
1C	SR	0.25	tβh ^{M18} /FM7	13
1C	SR	0.25	tβh ^{M18} /tβh ^{M18}	15
1C	SR	4	tβ ^{M18} /FM7	15
1C	SR	4	tβh ^{M18} /tβh ^{M18}	14
1C	SR	10	tβh ^{M18} /FM7	11
1C	SR	10	tβh ^{M18} /tβh ^{M18}	11
1 <i>D</i>	SP	0.25	tβh ^{M18} /FM7	13
1 <i>D</i>	SP	0.25	tβh ^{M18} /tβh ^{M18}	15
1 <i>D</i>	SP	4	tβh ^{M18} /FM7	15
1 <i>D</i>	SP	4	tβh ^{M18} /tβh ^{M18}	14
1 <i>D</i>	SP	10	tβh ^{M18} /FM7	11
1 <i>D</i>	SP	10	tβh ^{M18} /tβh ^{M18}	11
1 <i>F</i>	Total	0.25	Df(2R)42/Gla	8
1 <i>F</i>	Total	0.25	tdc ^{RO54} /SM5	10
1 <i>F</i>	Total	0.25	tdc ^{RO54} /Df(2R)42	7
1 <i>F</i>	Total	4	Df(2R)42/Gla	10
1 <i>F</i>	Total	4	tdc ^{RO54} /SM5	11
1 <i>F</i>	Total	4	tdc ^{RO54} /Df(2R)42	9
1 <i>F</i>	Total	10	Df(2R)42/Gla	13
1 <i>F</i>	Total	10	tdc ^{RO54} /SM5	14
1 <i>F</i>	Total	10	tdc ^{RO54} /Df(2R)42	15
1 <i>G</i>	SR	0.25	Df(2R)42/Gla	8
1G	SR	0.25	tdc ^{RO54} /SM5	10
1 <i>G</i>	SR	0.25	tdc ^{RO54} /Df(2R)42	7
1 <i>G</i>	SR	4	Df(2R)42/Gla	10

AC PNAS

Fig.	Sperm storage	Time AM, d	Female genotype	Sample size
1 <i>G</i>	SR	4	tdc ^{RO54} /SM5	11
1 <i>G</i>	SR	4	tdc ^{RO54} /Df(2R)42	9
1 <i>G</i>	SR	10	Df(2R)42/Gla	14
1 <i>G</i>	SR	10	tdc ^{RO54} /SM5	15
1 <i>G</i>	SR	10	tdc ^{RO54} /Df(2R)42	15
1 <i>H</i>	SP	0.25	Df(2R)42/Gla	8
1 <i>H</i>	SP	0.25	tdc ^{RO54} /SM5	10
1 <i>H</i>	SP	0.25	tdc ^{RO54} /Df(2R)42	7
1 <i>H</i>	SP	4	Df(2R)42/Gla	10
1 <i>H</i>	SP	4	tdc ^{RO54} /SM5	11
1 <i>H</i>	SP	4	tdc ^{RO54} /Df(2R)42	9
1 <i>H</i>	SP	10	Df(2R)42/Gla	13
1 <i>H</i>	SP	10	tdc ^{RO54} /SM5	14
1 <i>H</i>	SP	10	tdc ^{RO54} /Df(2R)42	15
2 <i>B</i>	Total	0.25	OAMB ²⁸⁶ /TM6	13
2 <i>B</i>	Total	0.25	OAMB ²⁸⁶ /OAMB ²⁸⁶	11
2B	Total	4	OAMB ²⁸⁶ /TM6	12
2 <i>B</i>	Total	4	OAMB ²⁸⁶ /OAMB ²⁸⁶	12
2B	Total	10	OAMB ²⁸⁶ /TM6	11
2B	Total	10	OAMB ²⁸⁶ /OAMB ²⁸⁶	12
20	SR	0.25	OAMB ²⁸⁶ /TM6	15
20	SR	0.25	OAMB ²⁸⁶ /OAMB ²⁸⁶	15
20	SR	4	OAMB ²⁸⁶ /TM6	15
20	SR	4	OAMB ²⁸⁶ /OAMB ²⁸⁶	12
20	SR	10	$OAMB^{286}/TM6$	15
20	SR	10	OAMB ²⁸⁶ /OAMB ²⁸⁶	13
20	SP	0.25	$OAMB^{286}/TM6$	13
20	SP	0.25	OAMB ²⁸⁶ /OAMB ²⁸⁶	13
2D	SP	4	OAMB ²⁸⁶ /TM6	12
20	SP SP	4	$OAMB^{286}/OAMB^{286}$	12
20	SP	10	$OAMB^{286}/TM6$	11
20	SP SP	10	$OAMB^{286}/OAMB^{286}$	12
3 <i>B</i>	Total	0.25	loi ⁰⁰⁸⁹⁸ /TM3	19
3 <i>B</i>	Total	0.25	loi ⁰⁰⁸⁹⁸ /loi ⁰⁴⁰²⁶	9
3 <i>B</i>	Total	4	loi ⁰⁰⁸⁹⁸ /TM3	17
38	Total	4	loi ⁰⁰⁸⁹⁸ /loi ⁰⁴⁰²⁶	16
38	Total	10	loi ⁰⁰⁸⁹⁸ /TM3	10
38	Total	10	loi ⁰⁰⁸⁹⁸ /loi ⁰⁴⁰²⁶	17
30	SR	0.25	loj ⁰⁰⁸⁹⁸ /TM3	20
30	SB	0.25	loi ⁰⁰⁸⁹⁸ /loi ⁰⁴⁰²⁶	1/
30	SR	0.25	loj ⁰⁰⁸⁹⁸ /TM3	14
30	SB	4	loi ⁰⁰⁸⁹⁸ /loi ⁰⁴⁰²⁶	10
30	SB	10		15
30	SB	10	loi ⁰⁰⁸⁹⁸ /loi ⁰⁴⁰²⁶	17
30	SD	0.25	loi ⁰⁰⁸⁹⁸ /TM3	12
ם צ שנ	Эг С D	0.25	loi ⁰⁸⁹⁸ /loi ⁰⁸⁹⁸	15
20	Jr CD	0.25	10j /10j 10j ⁰⁰⁸⁹⁸ /TM3	10
20	Эг С D	-+ /	loi ⁰⁰⁸⁹⁸ /lo: ⁰⁴⁰²⁶	17
סנ	JF CD	4 10	10j /10j 10j ⁰⁰⁸⁹⁸ /TM2	19
סכ	אר גר	10	10j /11VIS 10;00898/10:04026	17
30	254	10	10] /10]	17

SP, spermathecae; SR, seminal receptacle.

Table S1. Cont.

PNAS PNAS