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SI Materials and Methods
Populations and Samples. The Pan-Asian dataset consists of one
Papuan population from Papua New Guinea and one Melanesian
population from Bougainville obtained from the database of the
Human Genome Diversity Project–Centre d’Etude du Poly-
morphisme Humain and 288 unrelated individuals representing
13 Indonesian populations obtained from the Pan-Asia SNP
Project (1) (Table 1). The Affymetrix 6.0 dataset consists of 61
individuals from seven populations from Indonesia and one
Papuan population from the southern highlands of Papua New
Guinea (2, 3). Detailed information on these populations is
presented in Table 2.

Markers and Their Positions. In thePan-Asian dataset, genotype data
of 13 Indonesian populations generated usingAffymetrixGenechip
HumanMapping 50K Xba array were obtained from the Pan-Asia
SNP Project (1). Detailed information about data generation, fil-
tration, and data quality control was described elsewhere (1). Ge-
notype data of one Papuan population and one Melanesian
population were generated using Illumina Genechip Human
Mapping 650KXba array, and details were described elsewhere (4).
All of the analyses in this study used the markers that genotyped in
both Pan-Asia and HGDP-CEPH samples. With data integration,
we obtained 19,934 SNPs shared by 15 population samples. The
physical positions of SNPs were based on the Homo sapiens Ge-
nome Build 37. The average spacing between adjacent markers was
50.5 kb, with a minimum of 11 bp and a maximum of 26.8 Mb; the
median between marker distances was 18.3 kb. In the Affymetrix
6.0 dataset, all samples were genotyped on the Affymetrix 6.0
platform as described previously (2, 3). After data cleaning and
integration, there were 685,582 SNPs for analysis.

Statistical Analysis. Analysis of the Pan-Asian dataset. Principle com-
ponent analysis was performed at the individual level using
EIGENSOFT version 3.0 (5). Unbiased estimates of FST were
calculated using the work by Weir and Hill (6) with PEAS V1.0
(7). Great circle distance calculations followed the approach in
the work by Ramachandran et al. (8). The tree of populations
was reconstructed based on the FST distances and the neighbor-
joining algorithm (9) implemented in the Molecular Evolutionary
Genetics Analysis software package (MEGA version 4.0) (10).
Given the large number of markers in our dataset, genetic

analyses can be performed at the level of individual, making no
presumption of groupmembership.We applied a Bayesian cluster
analysis as implemented in the STRUCTURE program (11) and
a maximum likelihood method as implemented in the frappe
program (12) to infer the genetic ancestry of individuals. Our
approach is solely based on genotype without incorporating any

information on sampling location or population affiliation of
each individual. We ran STRUCTURE from K = 1 to K = 15,
and 10 repeats were done for each K values. All STRUCTURE
runs used 10,000 iterations after a burn-in of length 20,000 with
the admixture model and assuming that allele frequencies were
correlated (11). The frappe program was run for 100,000 iter-
ations from K = 2–15 and repeated 10 times for each single K
value. According to the distribution of the posterior probability
as provided by STRUCTURE and frappe analyses, the most
probable and appropriate number of clusters should be three in
our dataset.
In estimating the admixture time of East Indonesian pop-

ulations, we selected a panel of 2,807 ancestry informative
markers with large allele frequency differences (FST > 0.3) be-
tween ID-MT and Papuan and ran STRUCTURE with the
linkage model to estimate recombination rates in seven Eastern
Indonesian populations. In this model, STRUCTURE reports
not only the overall ancestry for each individual but also the
probability of origin of each allele. The break points were in-
ferred according to the estimated origin of each allele. The
program STRUCTURE was run with 100,000 iterations, 200,000
burn-ins, and 10,000 admixture burn-ins.
Analysis of the Affymetrix 6.0 dataset. Principle component analysis,
admixture proportions, and time of admixture estimation were
performed using the StepPCO software (13). Individual ancestry
components were inferred using a maximum likelihood method
as implemented in the frappe program (12). We ran analyses for
K= 2 and K= 3 and performed three independent runs for each
K value. The analysis of admixture rates on the autosomes vs. X
chromosome was based on 36,415 X-linked SNPs. For the time
of admixture estimation, Borneo and New Guinea were used as
parental groups. To make the sample sizes equal for the two
parental groups, 16 individuals were selected at random from the
NGH population. To limit the analysis only to variation defined
by the parental groups and exclude any signal in the admixed
groups that comes from genetic drift or other sources of ad-
mixture, the first principle axis was calculated only between the
parental groups, and the admixed group was then projected onto
this axis (14, 15). The admixture signal along each chromosome
was obtained, and the width of the ancestry blocks was estimated
as described previously (13). The method is sensitive to small
sample sizes, and the admixed Indonesian groups were, there-
fore, combined into the Nusa Tenggaras group (10 individuals
from the islands of Alor, Timor, Roti, and Flores) and the
Moluccas (10 individuals from the islands of Hiri and Ternate).
The time estimate is based on comparison with the data from
100 forward simulations with a 40% migration rate (13).
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Fig. S1. FST clines for 15 population samples. Pairwise FST values of all populations in the Pan-Asian SNP dataset were compared with the easternmost (Papuan)
and westernmost (ID-MT) populations, respectively.
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Fig. S2. The relationship between genetic distance (FST) and geographic distance computed using great circle distances. Blue diamonds represent pairwise
population comparisons. Red line is the regression line fitted to the data [FST = 1.4 × 10−2 + (1.5 × 10−5) × (geographic distance in kilometers)]. R2 for the linear
regression of genetic distance on geographic distance is 0.69 (Mantel test, P < 0.00005).
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Fig. S3. Distributions of the WT levels illustrating how the wavelet transform spectrum is different for populations with single vs. multiple admixture events.
WT levels from four populations are plotted (each bar represents one individual, and each individual has a measurement for each level). The height of the
columns indicates the abundance of wavelets of a particular frequency present in the signal, starting with the lowest wave frequencies (widest recombination
blocks, representing recent admixture) on the left and progressing to the highest wave frequencies (narrowest recombination blocks, representing older
admixture) on the right. (A) Distribution of the WT levels for Fiji, a population previously inferred to have experienced multiple admixture events (1, 2). (B)
Distribution of the WT levels for Polynesia, a population previously inferred to have experienced a single admixture event. (C) Distribution of the WT levels for
the Nusa Tenggaras. (D) Distribution of the WT levels for the Moluccas.
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Fig. S4. The relationship between admixture time difference (ATD), geographic distance computed using great circle distance (GCD), and genetic distance
(FST) in the Pan-Asian SNP dataset. (A) Data for all seven populations (ID-TR, ID-SB, ID-RA, ID-SO, ID-LA, ID-LE, and ID-AL). Blue circles represent pairwise
population comparisons of GCD. Blue line is the regression line fitted to the data of GCD on ATD (GCD = 188.5 + 0.17 × ATD). R2 for the linear regression of GCD
on ATD is 0.30 (P = 0.01). Red dots represent pairwise population comparisons of FST. Red line is the regression line fitted to the data of FST on ATD (FST = 168.9 +
0.07 × ATD). R2 for the linear regression of FST on ATD is 0.55 (P = 1.2 × 10−4). (B) Data for six populations with ID-TR removed, because ID-TR showed low levels
of admixture and wide confidence intervals in admixture time estimation (Fig. 1). Blue circles represent pairwise population comparisons of GCD. Blue line is
the regression line fitted to the data of GCD on ATD (GCD = 76.9 + 0.46 × ATD). R2 for the linear regression of GCD on ATD is 0.45 (P = 0.006). Red dots
represent pairwise population comparisons of FST. Red line is the regression line fitted to the data of FST on ATD (FST = 181.8 + 0.05 × ATD). R2 for the linear
regression of FST on ATD is 0.12 (P = 0.2).

Table S1. Pairwise FST between populations

ID-MT ID-ML ID-SU ID-JA ID-JV ID-DY ID-TR ID-SB ID-SO ID-RA ID-LA ID-LE ID-AL Papuan

ID-ML 0.027
ID-SU 0.033 0.009
ID-JA 0.033 0.010 0.001
ID-JV 0.033 0.010 0.000 0.000
ID-DY 0.035 0.012 0.011 0.012 0.012
ID-TR 0.028 0.010 0.012 0.013 0.014 0.016
ID-SB 0.038 0.018 0.018 0.018 0.019 0.022 0.014
ID-SO 0.054 0.031 0.028 0.029 0.029 0.035 0.028 0.011
ID-RA 0.048 0.024 0.022 0.023 0.023 0.027 0.023 0.013 0.016
ID-LA 0.053 0.033 0.033 0.033 0.034 0.038 0.028 0.010 0.009 0.017
ID-LE 0.058 0.036 0.036 0.037 0.037 0.040 0.031 0.011 0.010 0.019 0.003
ID-AL 0.081 0.057 0.056 0.057 0.058 0.062 0.052 0.024 0.017 0.031 0.011 0.008
Papuan 0.193 0.165 0.157 0.155 0.161 0.167 0.156 0.109 0.087 0.113 0.078 0.072 0.049
Melanesian 0.147 0.127 0.119 0.119 0.124 0.131 0.119 0.090 0.080 0.094 0.074 0.071 0.066 0.098
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Table S2. Admixture proportion of populations (%) estimated from 19,934 SNPs

Cluster 1 Cluster 2 Cluster 3

ID-MT 99.9 0.0 0.0
ID-ML 98.5 1.0 0.5
ID-SU 98.9 0.7 0.4
ID-JV 99.2 0.6 0.2
ID-JA 99.4 0.4 0.2
ID-DY 99.2 0.5 0.4
ID-TR 94.7 5.1 0.2
ID-SB 76.2 23.7 0.1
ID-RA 75.6 24.1 0.3
ID-SO 64.9 34.9 0.3
ID-LA 60.7 39.0 0.2
ID-LE 57.7 41.9 0.5
ID-AL 43.8 55.4 0.9
Papuan 1.2 98.4 0.4
Melanesian 6.7 47.3 46.0

Cluster 1, Asian; Cluster 2, Papuan; Cluster 3, Melanesian. Note that admixture proportions in the table are the
results averaged from 10 independent structure runs; the variation of the estimations from different runs is very
small, and SDs are less than 1%.
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