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Materials. We obtained compounds and products from the fol-
lowing suppliers: 6-formylindolo[3,2-b]carbazole (FICZ) from
Syntastic AB; H2O2, ellipticine, genistein, diosmin, α-naphto-
flavone (αNF), cycloheximide, α-tocopherol, resorufin, 7-ethox-
yresorufin, tryptophan (Trp), and fluorescamine from Sigma-
Aldrich; 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) from LGC
Standards; ketoconazole from Toronto Research Chemicals Inc.;
Ultraspec buffer from Nordic BioSite; RevertAid First Strand
cDNA synthesis kit from Fermentas; SYBR Green Master Mix
from Applied Biosystems; gene-specific primers for quantitative
PCR (qPCR) from Invitrogen; human recombinant CYP1A1
Supersomes from BD Bioscience; and alamarBlue viability assay
from Invitrogen. Trioxalen was provided by Desiree Edström
Wiegleb (Karolinska University Hospital, Stockholm, Sweden)
and 3′-methoxy-4′-nitroflavone was a kind gift from Michael S.
Denison (University of California, Davis, CA). The immortalized
human keratinocyte cell line HaCaT was kindly provided by N. E.
Fusenig (Deutsches Krebsforschungszentrum, Heidelberg) and
the AHR-silenced HaCaT cell variant by E. Fritsche (Leibniz-
Institut für Umwelt-Medizinische Forschung, Düsseldorf, Ger-
many). HEKa cells and all cell-culture reagents were procured
from Invitrogen.

Treatment of Mice. Female C57BL/6J mice (Scanbur) (three in
each group) were treated percutaneously on the back of the right
ear with 10 ng FICZ dissolved in 5 μL dimethyl sulfoxide
(DMSO)/acetone (1:1); control animals received the vehicle
only. Treatment started at 07.00 h. At various time points after
this administration, the animals were killed with CO2, and their
livers, adipose tissue (perirenal visceral fat), and right ears were
dissected out and placed in liquid nitrogen. This experiment was
conducted in accordance with the regulations for animal exper-
imentation at Karolinska Institutet and was preapproved by the
Ethical Committee on Animal Experimentation in Stockholm.

Cell Cultures and Media. HEKa cells were grown and treated in
supplemented medium 154. For HaCaT cells, two other media
were used: DMEM 21068 and custom-made DMEM 21068-like
medium free from Trp but supplemented with recrystallized,
purified Trp at the same concentration (78 μM) as in the com-
mercial medium. This latter medium always was prepared shortly
before use. HaCaT cells were cultured in DMEM supplemented
with 10% (vol/vol) FBS, 2 mM glutamine, 1 mM sodium pyru-
vate, 100 μg streptomycin, 100 IU penicillin/mL, and 0.02 mM
calcium chloride. For culturing of HaCaT cells in which the aryl
hydrocarbon receptor (AHR) had been silenced or which had
been transfected with the empty vector, 800 μg Geneticin/mL
was added to the culture medium. Medium 154 was supple-
mented with 0.2% (vol/vol) bovine pituitary extract; 5 μg bovine
insulin, 0.18 μg hydrocortisone, 5 μg bovine transferrin, 0.2 ng
human epidermal growth factor, 10 μg gentamicin, and 0.25 μg
amphotericin B per milliliter and with 0.04 mM calcium chloride.
All culturing was performed at 37 °C under an atmosphere
containing 5% CO2. Before treatment, HaCaT and HEKa cells
were grown for the different periods of time required to attain
overconfluence in the routine cell medium supplemented with
a higher concentration of calcium chloride (2 mM) to obtain
differentiation.

Recrystallization of Trp. One gram of Trp was added to 250 mL
absolute ethanol, and the solution was brought to boiling with

stirring. More ethanol was added gradually until a saturated
solution was obtained; the saturated solution was filtrated, slowly
cooled, and left to crystallize at 4 °C. The crystals were collected
and washed in absolute ethanol and were dried under vacuum.
All procedures were carried out protected from light. Then 25 mg
of the recrystallized Trp was dissolved in 50 mL water, concen-
trated on C18 SepPak cartridges (Waters), and a methanol el-
uate was analyzed by HPLC (fluorescence) for the presence of
FICZ. FICZ in the recrystallized Trp was below the detection
limit for this analytical setting (5 fmol).

Exposure of the Cell Cultures. With the exception of H2O2, which
was dissolved in water, and α-tocopherol and trioxalen, which
were dissolved in EtOH, all compounds to be tested were dis-
solved in DMSO and were added to the culture medium to give
a final concentration of 0.1% (vol/vol) DMSO or EtOH. For
UVB irradiation, UV lamps containing six (Philips TL20W/12RS
sunlamps) or two (Philips PL, 36W, UV240 DT, IP20) UV tubes
were used. All UVB irradiation of cells was performed in PBS
supplemented with calcium and magnesium, and fresh medium
was added immediately after irradiation.

Clearance of FICZ.To determine the clearance (i.e., metabolism) of
FICZ by HaCaT cells, these cells were seeded onto 60-mm dishes
and cultured as described above. At 0, 0.25, 0.5, 1.5, 3, 6, and 12 h,
samples were taken by removing the medium, rapidly washing
the cells with ice-cold PBS, and then harvesting the cells in
distilled water. The cells then were sonicated on ice and stored at
−20 °C until further analysis by HPLC.

Ethoxyresorufin Deethylarion Assay. The ethoxyresorufin deethy-
lase (EROD) activity of isolated fractions containing human
recombinant CYP1A1 (10 nM) was assayed by first preincubating
with effector for 10 min followed by addition of ethoxyresorufin
(1 μM) and NADPH (0.5 mM). To analyze CYP1A1-dependent
EROD activity of intact living cells, HaCaT or HEKa cells were
seeded onto 96-well plates and cultured as described above. At
1.5, 3, 6, 12, and 24 h (Fig. 2B); 1.5, 3, 6, 12, 24, and 48 h (Fig. 3B
and 4 and Fig. S2); 1.5 and 3 h (Fig. S3); 1.5, 6, 24, and 48 h (Fig.
S5); and 12, 24, and 48 h (Fig S6), the reaction was terminated by
removing the medium and rinsing the cells with PBS. The
EROD reaction then was initiated by addition of 2 μM 7-
ethoxyresorufin in sodium phosphate buffer (50 mM, pH 8.0);
then the cells were incubated at 37 °C for 15 min. In both cases
formation of resorufin was quantified on a multiwell plate reader
with the excitation/emission wavelengths of 535/590 nm; then
this activity was expressed relative to the amount of protein
present as determined by fluorescamine fluorescence (excitation/
emission = 390/485 nm) or by using the DC protein assay kit
(BioRad) in accordance with the manufacturer’s protocol.

RT-qPCR. Total RNA isolated with Ultraspec (Biotecx) in accor-
dance with the manufacturer’s protocol was subjected to reverse
transcription using the RevertAid First Strand cDNA synthesis kit
and oligo (dt)18 primers. Thereafter, SYBR Green Master Mix
and gene-specific primers were used for qPCR. β-2-Microglobulin
or β-actin was selected as the reference gene, and the results were
analyzed with the mathematical model described by Pfaffl and
colleagues (1).

Viability. Cell viability was assessed with the alamarBlue assay,
which is based on the reduction of resazurin to resorufin by
metabolically active cells.
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Preparation of Whole-Cell Extracts and Immunoblotting.HaCaT cells
were harvested in cell lysis buffer [25mMTris-phosphate (pH7.8),
2mMDTT, 2mM1,2-diaminocyclohexane-N,N,N′,N′,-tetraacetic
acid, 10% (vol/vol) glycerol, 1% (vol/vol) Triton X-100) supple-
mented with protease inhibitor mixture (Roche). The proteins in
this lysate were separated by 8.7% (wt/vol) SDS/PAGE, trans-
ferred onto a nitrocellulose membrane, and subjected to Western
blotting with the following antibodies: rabbit anti-AHR (sc-5579)
and anti-GAPDH (Santa Cruz Biotechnology) and HRP-conju-
gated anti-rabbit IgG (DakoCytomation). Finally, the immuno-
reactive proteins were visualized by enhanced chemiluminescence
(Pierce/Thermo Fisher).

Chemical Analyses of Whole-Cell Lysates and Cell-Culture Media. The
levels of FICZ in whole-cell lysates were analyzed using an in-line
solid-phase extraction column coupled to a reverse-phase C18
column. In brief, the cell lysates were injected onto the extraction
column, washed with water, and then separated on the analytical
C18 column. FICZ was detected using excitation and emission
wavelengths of 390 and 525 nm, respectively. With this system,
≥95% recovery was obtained, and the limit of detection for
FICZ was 0.05 pmol. The cellular concentration of FICZ was
related to protein content as determined by the Coomassie plus
protein assay (Pierce), with BSA as the standard.
To avoid light-dependent formation of FICZ during extraction

and analysis, all cell culture media were handled in the dark at all
times, and the samples were stored in amber vials. Commercial
DMEM was extracted at 4 °C using C18 SepPak cartridges
(Waters) and subsequently was eluted with ethanol. This eluate
then was mixed with an equal volume of water, followed by
fractionation and analysis by HPLC (YL9100HPLC equipped
with an Agilent 1200 fluorescence detector). Separation in this
HPLC system was achieved using a reverse-phase C18 column
[Alltech Alltima, 4.6 × 250 mm, particle size (dp) 5 μm; ScanTec]
with a mobile phase consisting of water (A) and acetonitrile (B),
both containing 1.5 mM formic acid. Initially, the solvent con-
tained 50% B, with a linear increase to 80% B during a period of
20 min, at a flow rate of 0.8 mL/min.
The FICZ fraction isolated with this semipreparative liquid

chromatograpy (LC) system was analyzed further using in-line
concentration and enrichment on a precolumn (ReproSil DIBS-

C4, 5 μm, 4.6 × 10 mm; Dr. Maisch GmbH), followed by elution
onto a separation column (Acquity HSS T3 C18, 2.1 × 100 mm,
dp 1.8 μm; Waters) connected to a quadrupole time-of-flight
high-resolution mass spectrometer (QToF Premier; Waters). In
this case the solvent was 100% A (5% acetonitrile in water),
which was changed linearly to 50% B (5% water in acetonitrile)
in 0.5 min, then changed linearly to 100% B in 2.5 min, and then
held for 5 min. The flow rate was 0.150 mL/min for the first 0.5
min and 0.300 mL/min for the remaining 10.5 min (including the
final 3-min reequilibration). The column temperature was
maintained at 65 °C.
The precolumn was fitted to a six-port valve (Rheodyne) to

which two LC pumps also were connected. The first pump (HP
1050; Hewlett Packard) was used to load the sample via a manual
loop injector equipped with a 4-mL sample loop. The second LC
pump, an Acquity ultra performance liquid chromatography
system (Waters), was used for gradient elution of the sample,
which involved back-flushing it from the precolumn onto the
separation column.
The QToF MS was operated in the electrospray ionization

negative-ion mode, with the TOF detector in the V-mode. The
quadrupole was set to a wide-pass mode, and the collision energy
alternated between 2 and 20 eV, using two full-scanMS functions.
The duration of each scan was 0.2 s, and the interscan interval was
0.01 s. The mass ranges were 70–350 and 70–300 Thomson (Th)
for functions 1 and 2, respectively.
The following settings were used: capillary voltage of 3.0 kV;

sampling cone voltage of 35 V; extraction cone voltage of 2.9 V;
source temperature of 100 °C, desolvation temperature of 350 °C;
cone gas (nitrogen) flow rate of 50 L/h; and desolvation gas (ni-
trogen) flow rate of 700 L/h. Argon was used as the collision gas,
at a flow rate of 0.5 mL/min, to produce a pressure of 3.5 × 10−3

mbar in the collision cell. External mass calibration was per-
formed in the mass range (m/z) of 100–1,000 Th, using a series of
cluster ions formed from 0.05 M NaOH and 0.5% formic acid
dissolved in 2-propanol/H2O (90:10). Sulfadimethoxine (m/z
309.0658) in methanol (0.1 ng/μL) was used as a lockspray solu-
tion. The lockspray was monitored once every 5 s (i.e., once after
every 12 scans, on average).

1. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time
RT-PCR. Nucleic Acids Res 29(9):e45.
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Fig. S1. FICZ is a potent inducer of CYP1A1 gene expression in vitro. The levels of CYP1A1 mRNA in HaCaT cells treated for 2 h with different concentrations of
FICZ, ranging from 0.1 pM to 10 μM, was determined by qRT-PCR using the β-2-microglobulin housekeeping gene as an internal standard. The experiment was
performed in triplicate. Error bars indicate SE, and asterisks denote significant differences (*P < 0.05) compared with DMSO-treated cells.
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Fig. S2. UVB, H2O2, and 3′-methoxy-4′-nitroflavone (MNF) inhibit and induce CYP1A1 enzyme activity in HEKa cells. Cells were treated with 5 nM FICZ (black
triangle) (Top), 5 nM TCDD (star) (Middle), or DMSO (crossed circle) (Bottom), either alone or in combination with 5 mJ/cm2 (light gray square), 10 mJ/cm2

(medium gray square), or 20 mJ/cm2 (dark gray square) UVB, or with 0.2 mM (light gray circle) or 2 mM (medium gray circle) H2O2, or with 0.05 μM (light gray
diamond), 0.5 μM (medium gray diamond), or to 2.5 μM (dark gray diamond) MNF. Treatments were terminated at the indicated time points, and EROD activity
(pmol resorufin/mg protein) was measured. All cotreatments inhibited FICZ-dependent EROD activity at early time points (P < 0.05 to P < 0.001), and TCDD-
dependent EROD activity was inhibited at all time points (P < 0.05 to P < 0.001) except for 0.05 μM MNF, which potentiated TCDD-dependent EROD activity at
48 h. Error bars indicate SE. Asterisks indicate statistically increased (*P < 0.05; **P < 0.01; ***P < 0.001) EROD activity caused by the different cotreatments
together with FICZ, TCDD, and DMSO. ns, nonsignificant.
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Fig. S3. Inhibitors of CYP1A1 cause an initial inhibition of FICZ-induced EROD activity. HaCaT cells were treated with 5 nM FICZ, either alone (black bar) or in
combination with 5 mJ/cm2 (light gray bar) 10 mJ/cm2 (medium gray bar), or 20 mJ/cm2 (dark gray bar) UVB (Left); or in combination with 0.2 mM (medium gray
bar) or 2 mM (dark gray bar) H2O2; or in combination with 0.05 μM (light gray bar), 0.5 μM (medium gray bar), or 2.5 μM (dark gray bar) MNF. Treatments were
terminated at the indicated time points, and EROD activity (pmol resorufin/mg protein) was measured. Error bars indicate SE. Asterisks denote significant
differences (*P < 0.05; **P < 0.01; ***P < 0.001) between coexposed cells and cells exposed to FICZ alone. ns, nonsignificant.
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Fig. S4. Differentiated HaCaT cells express more AHR protein than do proliferating cells. Relative levels of the differentiation markers involucrin (A) and
transglutaminase 1 (B) in cells grown at high (dark gray bars) or low (light gray bars) cell density were determined by qRT-PCR using the β-actin housekeeping
gene as an internal standard. n = 2. Error bars indicate SD. *P < 0.05; **P < 0.01. (C) Western blot analysis of AHR levels in HaCaT cells grown at low or high
density was determined in HaCaT cells stably expressing a lentiviral silencing vector (SV) with shRNA sequences for AHR and cells carrying an empty vector (EV).
Relative expression (RE) was calculated based on signal intensity of the AHR compared with GAPDH, which was used as an internal standard.
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Fig. S5. Induction of CYP1A1 enzyme activity by UVB, H2O2, and MNF in cells cultured in commercial DMEM is AHR dependent. HaCaT cells containing empty
vector or AHR silencing vector were treated with (A) 10 mJ/cm2UVB, (B) 0.2 mM H2O2, or (C) 0.5 μM MNF. Treatments were terminated at the indicated time
points, and EROD activity (pmol resorufin/mg protein) was measured. Error bars indicate SE. Asterisks denote significant differences (**P < 0.01; ***P < 0.001)
between cells containing empty vector and cells containing AHR silencing vector.
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Fig. S6. Induction of CYP1A1 enzyme activity by different CYP1 inhibitors requires the presence of Trp derivatives in the culture medium. HaCaT cells were
treated with nine different compounds, including TCDD as positive control, in commercial DMEM (gray circle) or in DMEM prepared with recrystallized Trp
(black triangle). Treatments were terminated at the indicated time points, and EROD activity (pmol resorufin/mg protein) was measured. Error bars indicate SE.
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Table S1. AHR-activating agents that also inhibit CYP1 enzymes

Class Physical or chemical description Compound name References

Combustion products Polycyclic aromatic hydrocarbons Anthracene (1, 2)
Chrysene (3, 4)
Fluoranthene (5, 6)
Phenanthrene (2, 7)

Clinical drugs Antifertility drugs 3-(2-Ethyl phenyl)-5-(3-methoxy
phenyl)-1H-1,2,4triazol (DL111)

(8)

Anti-inflammatory drugs Diclofenac (9, 10)
Leflunomide (11, 12)
Sulindac (13)

Antiparasitic drugs Albendazole (14, 15)
Bitertanol (16)
Clotrimazole (17, 18)
Enilconazole (19)
Itraconazole (20)
Ketoconazole (20)
Medetomidine (21)
Miconazole (22, 23)
Oltipraz (24, 25)
Primaquine (23, 26)
Quinine (27, 28)

Beta-blockers Metopropol (11, 29)
Propranolol (9, 29)
Timolol (11, 29)

Cytostatics, chemotherapeutic drugs 4-Aminophenyl, 2-(4-amino-3-methylphenyl)
benzothiazole (DF 203)

(30)

Anastrozole (11, 31)
Doxorubicin (32, 33)
Ellipticine (34, 35)
Flutamide (36)

Corticosteroids Dexamethasone (37, 38)
Lipid-lowering agents Ciprofibrate (39, 40)

Clofibrate (41, 42)
Fluvastatin (43, 44)

Psoriasis drugs 5-Methoxypsoralen (45)
8-Methoxypsoralen (46, 47)

Proton pump inhibitors Omeprazole (48, 49)
Selective serotonin reuptake inhibitors Fluoxetine (11, 42)

Fluvoxamine (41, 50)
Paroxetine (41, 42)
Sertraline (11, 51)

Endogenous and
natural substances

Arachidonic acid metabolites Lipoxin A4 (52)
Alkaloids Berberine (53),

Caffeine (54, 55)
Cocaine (56, 57)
Evodiamine (58, 59)
Harman (60, 61)
Piperine (62)
Rutaecarpine (58, 63)
Δ9-Tetrahydrocannabinol (64)

Organosulphur compounds Diallyl sulfide (65, 66)
Diallyl disulfide (67, 68)
Diallyl trisulfide (65, 68)
Phenethyl isothiocyanate (PEITC) (69, 70)
Sulforaphane (71, 72)

Anthraquinones, chalcones, catechines,
flavonoids, guaiacols and phenols

α-Naphthoflavone (αNF) (73, 74)
Apigenin (50, 75)
Baicalein (76, 77)
Biochanin A (78)
Chrysin (77, 79)
Daidzein (77, 80)
Diosmetin (81)
Diosmin (70, 82)
Ellagic acid (83, 84)
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Table S1. Cont.

Class Physical or chemical description Compound name References

Emodin (77, 85)
Epigallocatechin gallate (EGCG) (86)
Eugenol (87, 88)
Flavone (89, 90)
Galangin (89, 91)
Hesperetin (92, 93)
Hydroxychalcones (94, 95)
Isorhamnetin (75, 96)
Kaempferol (75, 96)
Luteolin (75, 79)
3′-Methoxy-4′-nitroflavone (MNF) (97, 98)
Phloretin (99)
Quercetin (100, 101)

Coumarins, furanocoumarins and terpenes Angelicin (102)
Bergamottin (102, 103)
Isoimpinellin (104)
Limonene (105)

Curcuminoids Curcumin (106, 107)
Heme metabolites Hemin (108, 109)
Indoles Diindolylmethane (DIM) (69, 110)

Indole-3-carbinol (I3C) (110, 111)
Melatonin (11, 112)
Tryptamine (113)

Methylenedioxyben-zenes Isosafrole (50, 114)
Piperonyl butoxide (115, 116)
Safrole (11, 117)

Stilbenoids Resveratrol (23, 70)
Vitamins and antioxidants Lycopene (118, 119)

Menadione (120, 121)
Retinoic acid (121, 122)
α-Tocopherol (120, 123)
1-O-Hexyl-2,3,5-trimethylhydroquinone (124)
Propyl gallate (125, 126)
Tert-butylhydroquinone (tBHQ) (68, 124)
Tannic acid (125, 126)

Dietary mutagens Heterocyclic amines 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (60)
2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeAalphaC) (60)
3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) (60)

Industrial compounds Plastic monomers and additives Bisphenol A (BPA) (127, 128)
Nonylphenol (129, 130)
Polybrominated diphenyl ethers (PBDE) (131, 132)
Toluene diisocyanate (TDI) (133)

Metals Cadmium (134, 135)
Chromium (136, 137)
Copper (137, 138)
Mercury (137, 138)

Oxidants Hyperoxia (139, 140)
Oxidized low-density lipoproteins (oxLDL) (141, 142)
Ozone (143, 144)

Pesticides Ureas Diuron (145, 146)
N-Phenylthiourea (PTU) (147, 148)
Prochloraz (149)

Carbamates Carbaryl (150, 151)
Organophosphates Chlorpyrifos (145, 152)

Fenitrothion (145, 153)
Organochlorines Endosulphan (154, 155)

Specific inhibitors
and blockers

Corticosteroid synthesis inhibitors Metyrapone (156)
Carnitine palmitoyl-transferase-1 inhibitors Etomoxir (157)
Cytochrome P4501 suicide inhibitors 1-Ethynylpyrene (158)

2-Phenylphenanthridinone (159)
SKF-525 (160, 161)

Kinase inhibitors Genistein (67, 77)
U0126 (162)

5-Lipoxygenase inhibitors Zileuton (163, 164)
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Table S2. Viability of HaCaT cells exposed to inhibitors of CYP1A
in commercial DMEM (Com) or in DMEM prepared with purified
tryptophan (Pure)

Compound (concentration)

Viability*

Com Pure

TCDD (1 nM) 101 ± 1.44 99.2 ± 4.12
Trioxalen (1 μM) 95.6 ± 1.99 94.2 ± 2.40
Ketoconazole (10 μM) 103 ± 2.85 100 ± 0.93
Ellipticine (0.05 μM) 92.3 ± 4.93 102 ± 1.84
Genistein (10 μM) 98.3 ± 1.74 99.9 ± 2.65
Diosmin (10 μM) 98.2 ± 3.62 101 ± 4.07
α-NF (0.25 μM) 103 ± 2.22 97.7 ± 1.88
Cycloheximide (18 μM) 88.0 ± 1.11 86.5 ± 2.06
α-Tocopherol (50 μM) 99.2 ± 1.69 100 ± 1.52
MNF (2.5 μM) 100 ± 3.03 104 ± 2.00
H2O2 (2 mM) 88.7 ± 4.37 94.2 ± 3.74
UVB (20 mJ/cm2) 98.4 ± 3.46 100 ± 1.09

*Percent metabolically active cells as assessed with the Alamar Blue assay
after 48 h of culturing; means ± SE of triplicate measurements from two
independent cell cultures.
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