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SI MATERIALS AND METHODS

S1 Model Description

As described in the main text, simulations are stochastic, in a lottery manner (1). This
means that at each generation (=time step), N, plants (/V, animals) are drawn at random
to replace the N, plants (IV, animals) of the previous generation. A detailed scheme of
the spatial organization of the metacommunity can be found in Fig. S1.

The probabilities of this lottery are detailed in the main text. We here provide addi-
tional explanations for the choice of seed (egg) production equations. In the mutualistic
case, we consider that there is a base seed (egg) production equal to 1 — ¢, (1 —¢,) for
plants (animals). For the plants, this base fecundity corresponds to selfing, that we here
assume constant among species for simplicity. For the animals, assuming that fecundity is
proportional to diet, the base fecundity corresponds to the diet part which is not achieved
during the mutualistic interaction with the plants. The additional term corresponds to
the part of seed (egg) production which depends on the mutualistic interaction. For the
plants, we consider that each animal of species j effectively pollinates a flower of species ¢
at a rate [;;. Hence a flower of species ¢ is pollinated at a total rate equal to Zf;l njl;;. We
further assume that flowers compete to attract animals, so that the pollinator-mediated
fecundity of a flower of species i depends on the rate at which the flower is pollinated

compared to the rate at which other flowers are pollinated. This leads to the expres-
Zfil n?Iij
P
iil <N_]; 21551 ni I

above (below) 1 if it is more (less) pollinated than an average flower. For the animals,

sion: ¢, . Our formulation implies that a flower will have a fecundity

we consider that animals gather resources from the plant at the same rate I;; that they

pollinate the plant, and that the plants provide a fixed amount of resources. We assume
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that animals compete for these resources, so that an animal of species j gathers from a

I .
e T When summing over the
a
k=1 Ng lik

relative frequency of the plants, we recover Equation 2. We additionally studied another

plant of species ¢ an amount of resources equal to

way to model animal fecundity, and obtained similar results (see SI Section S2.11.2). In
the antagonistic case, the reasoning is the same, except that plants are negatively affected
by the interaction.

This model formulation presents several advantages. First, it corresponds to a purely
neutral model when removing between groups interactions. Consequently, this model
enables to explore the deterministic effect of ecological interactions in a background of
demographic and environmental stochasticity as is often the case in nature (2). Second,
this model can be quickly simulated by coalescence, so that it is possible to fit this model
to real data by Approximate Bayesian Computation (see Methods). Third, by fixing con-
stant community sizes, it focuses on community composition by removing the potential
confounding influence of variations in community sizes. This constant community size
assumption is a good first approximation for plants in many terrestrial systems. Indeed,
herbivores generally have a limited feeding effect on plant biomass for various reasons in-
cluding the low food quality of many plant parts, and the control of insect herbivores by
natural enemies (3). Although it is not the case for insects, their population fluctuations
are likely to be mainly driven by factors not related to plants like climate (4). Conse-
quently, our fixed community size assumption is a good simplifying assumption which
is unlikely to make us miss any retroactions taking place between the plant and insect
groups. An alternative approach would have been to use Lotka-Volterra type equations
to model the coupled dynamics of plants and animals (5). A drawback of this approach
is that it requires a large number of species-specific parameters like intrinsic growth rates

and carrying capacities. Such an increase in the number of parameters would prevent



1 the model from being fitted to available data, in that we would need much additional

> information on each species or community dynamics.

b
..H?H?H.

Fig. S1: Model representation. Circles stand for patches, horizontal and vertical arrows
represent dispersal between neighboring patches, and oblique arrows indicate dispersal
from the species pool. N, (NN,) is the number of plant (animal) individuals in each patch.
my (Mmg) is the plant (animal) dispersal rate between neighboring patches. g, (i,) is the
plant (animal) dispersal rate from the species pool to each patch.
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S2 Model results - impact on the plant set

S2.1 « diversity of plants

In this section, we detail the results obtained in Fig. 2 of the main text. Let us start by
considering nested mutualistic networks produced with a threshold rule (Fig. 2A). For
the limiting case of low dispersal rates and weak mutualism (low m, and ¢,), we recover
Bastolla et al.’s result (5), namely, that nested networks tend to increase plant local
richness (bottom left of Fig. 2A). In this case, bi-trophic interactions have a stabilizing
effect (6) induced by the heterogeneity among animals in their plant preferences. Thus,
communities tend to gain species with over-dispersed traits during the coupled dynamics
(see “Variance Test” in SI Section $2.5). This limiting case without dispersal corresponds
to the standard network approach.

When dispersal rates increase and/or mutualistic interactions become stronger (larger
¢p), the positive effect of mutualistic interactions on plant richness decreases and even
becomes negative (Fig. 2A). The stabilizing effect of the mutualistic interactions is now
counterbalanced by their filtering effect: plants survive only if they encounter a corre-
sponding mutualist. We detect this filtering effect by computing the average interaction
strength between plant and animal individuals. When mutualistic interactions have a
negative impact on plant species richness, the average interaction strength increases com-
pared to the neutral case (see “Coupling Test” in SI Section S2.4). The surviving plants
are those which encounter more mutualists.

Similar results are obtained with antagonistic networks (Fig. 2B). In this case, when
bi-trophic interactions have a negative impact on plant species richness, the average inter-
action strength decreases compared to the neutral case (see “Coupling Test” in ST Section

S2.4). The surviving plants are those which encounter fewer antagonists.
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Once we have considered nested networks, we now turn our attention to highly spe-
cialized networks. We obtained similar results for this type of networks (Fig. 2C-D). The
common feature of both nested and specialized networks is their low average degree (i.e.,
species interact on average with a low number of species), although the variance in degree
distribution is larger in nested networks. This average degree hence appears to play a
major role in how network architecture determines the impact of bi-trophic interactions
on plant richness.

When interactions are generalized both mutualistic and antagonistic networks increase
species richness at low dispersal rates and decrease it at high dispersal rates (Fig. 2E-F).
At low dispersal rates, local species richness is mainly controlled by local interactions.
When they are generalized, the filtering effect of the interactions is low, and the sta-
bilizing effect predominates. Equitability in plant abundance is low without bi-trophic
interactions and increases in the presence of such interactions. This increase in plant
equitability is positively correlated with the variation in plant richness in the presence
of interactions (see “Equitability Test” in SI Section S2.6). At higher dispersal rates,
local species richness increases and becomes more dependent on the recurrent dispersal of
locally rare species. When disrupting the fitness equivalence among individuals, interac-
tions tend to destabilize this dynamic equilibrium (7). This disruption leads to a reduced
equitability in species abundances and, ultimately, in species loss (see “Equitability Test”
in ST Section S2.6). This result is in agreement with a recent meta-analysis of herbi-
vore exclusion experiments showing that herbivory reduced plant species richness when
equitability in plant abundances was high, and vice versa (8).

Along the second axis of variation, we find that mutualistic interactions have an in-
creased negative effect on plant richness for stronger values of coupling ¢, (Fig. 2E).

This is due to an increase of the filtering effect of the interaction, as encountered earlier



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

for specialized interactions. In contrast, we find the reverse relationship for antagonis-
tic interactions: stronger coupling leads to an increased positive effect on plant richness,
especially at low dispersal rates (Fig. 2F). Here the stabilizing effect of herbivores ex-
ceeds their filtering effect, so that the resulting effect of herbivores on plants is positive.
Stronger coupling between plants and herbivores thus increase the magnitude of this pos-
itive effect, especially at low dispersal rates for which local interactions have the strongest
impact on community dynamics.

The balance between the filtering and the stabilizing effects also depends on the species
richness of the plant set, both at the local and regional scales. In metacommunities with
larger regional species richness, we find a stronger positive effect of both mutualistic and
antagonistic interactions on local plant species richness. In contrast, in communities with
larger local richness, we observe a stronger negative effect of both interaction types on
plant richness, this contrast being stronger for antagonistic interactions (see SI Section
2.7). These results differ from those of Thébault and Fontaine (9) who studied network
dynamics in closed communities and found that higher diversity promotes persistence
in mutualistic networks and destabilizes it in antagonistic ones. Our current results,
therefore, show that local and regional diversity may be associated with different effects
of bi-trophic interactions in spatially-extended systems. Another difference is that, as
reported here, local and regional richness have a very small correlation with the effect of

bi-trophic interactions on plant richness in this spatially extended model (R? = 0.01).

S2.2 [ diversity of plants

Up to here, we have described patterns of local species richness, namely, plant richness
at each lattice site. Our framework also enabled us to study the effect of bi-trophic inter-

actions on plant richness at the regional scale, i.e., considering the regional abundances
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across the entire lattice. When interactions have a negative effect on plant local richness,
( diversity simultaneously increases (Fig. S2). In 91% (89 %) of the cases for mutual-
istic (antagonistic) interactions, the decrease in metacommunity richness is smaller than
the decrease in local richness. For the small system size used in the simulations (5 x 5
patches), this increase in 3 diversity is not always sufficient to make up for decreases in
local richness; consequently metacommunity richness can also decrease due to both mutu-
alistic and antagonistic interactions. However, as system size increases in the simulations,
metacommunity richness becomes less affected by bi-trophic interactions (Fig. S3A). This
means that animals do not act to filter the same plant species in every patch, thereby
increasing the spatial structure of plant diversity. Indeed, when computing the relative
fecundity of plant species in each patch, we find that 63% (56%) of the plant species are
positively filtered in at least one patch by the mutualistic (antagonistic) animal group
(see SI Section S2.10). These results suggest that bi-trophic interactions tend to strongly

impact the spatial heterogeneity of plant diversity.
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Fig. S2: Relative variation (in %) of plant 3 diversity between trophically coupled and
uncoupled communities. [ diversity is measured as the ratio of metacommunity over
local plant richness S)"/S,. Panels A and D display a threshold model of interaction
with one trait; panels B and E show results for the matching model with one trait and
o = 0.015; panels C and F are based on a matching model with one trait and ¢ = 1.
Panels A-C correspond to mutualistic interactions. Panels D-F correspond to antagonistic
interactions. Parameter values are p, = p, = 0.004, m, = 0.625, ¢, = 0.16.

S2.3 Effects of the model parameters on the impact of bi-trophic
interactions

As mentioned in the main text, mutualistic and antagonistic interactions can have both
positive and negative effects on plant richness S,, but also on Shannon’s diversity H,,.
We explore the effects of each model parameter and interaction type by multiple regres-
sions (Tables S1-4). In these regressions, the dependent variable is the relative varia-
tion in species richness due to the bi-trophic interactions: AS, = (S; — S]’}) /Sy, and
AH, = (H; — Hg) /H}, where the superscript i means with interaction, and n without
interaction.

Less diverse, more dispersal-limited, and more strongly impacted plant sets are ex-

periencing a stronger filter from both mutualistic and antagonistic interactions: plant



dispersal rates m, and p, are positively correlated with variations in plant Shannon’s
index AH,, while the interaction impact on plants ¢, is negatively correlated with AH,
(Tables S3-4). Parameter effects are less straightforward when looking at variation in
plant species richness AS, (Tables S1-2), probably because they impact plant diversity
patterns at both local and metacommunity scales, and these patterns have contradictory
effects on local plant persistence (see below). Parameters of the animal set have overall a

lower effect on plant composition.

10



1 Table S1: Effect of mutualistic interactions on the variation in plant species richness
2 AS,,.
s *the first (second) number is the number of matching (threshold) rules.

+ R?2=0.52

‘ Parameter ‘ Estimate ‘ Standard Error ‘ p-value ‘

Intercept -0.08 0.002 <2e-16
I 5.06 0.18 <2e-16
lha 3.11 0.18 <2e-16
my -0.09 0.001 <2e-16
Mg -0.03 0.001 <2e-16
Cp -0.53 0.001 <2e-16

. Ca 0.09 0.001 <2e-16
Model 1-0%* -0.12 0.002 <2e-16

Model 0-2* -0.13 0.002 <2e-16

Model 1-1* -0.25 0.002 <2e-16

Model 2-0* -0.19 0.002 <2e-16

Model 1-2* -0.33 0.002 <2e-16

Model 2-1* -0.30 0.002 <2e-16

Model 2-2%* -0.37 0.002 <2e-16

o 0.04 0.0001 <2e-16

11



1 Table S2: Effect of antagonistic interactions on the variation in plant species richness
2 AS,,.
3 *the first (second) number is the number of matching (threshold) rules.

4 R? = 0.12

‘ Parameter ‘ Estimate ‘ Standard Error ‘ p-value ‘

Intercept -0.17 0.007 <2e-16
1Ly 17.87 0.73 —2e-16
[l 9.01 0.73 2616
m, 70.38 0.005 ~2¢-16

Ma 20.04 0.005 6e-13
& 0.09 0.003 ~2¢-16
Ca 0.14 0.003 ~2e-16
° Model 1-0% | 0.27 0.007 ~2e-16
Model 0-2% | -0.43 0.009 ~2e-16
Model 1-1% | -0.39 0.007 —2e-16
Model 2-0% | 0.14 0.007 ~2¢-16
Model 1-2% | -0.56 0.007 —2e-16
Model 2-1% | -0.37 0.007 —2e-16
Model 2-2% | -0.51 0.007 ~2e-16
o 0.06 0.0004 —2e-16

12



Table S3: Effect of mutualistic interactions on the variation in plant equitability AH,,.
*the first (second) number is the number of matching (threshold) rules.

R? = 0.49

‘ Parameter | Estimate ‘ Standard Error ‘ p-value

Intercept -0.07 0.002 <2e-16
oy 14.15 0.19 <2e-16

[ 1.96 0.19 <2e-16

my 0.06 0.001 <2e-16

myg -0.03 0.001 <2e-16

Cp -0.47 0.001 <2e-16

Ca 0.08 0.001 <2e-16
Model _1-0* -0.19 0.002 <2e-16
Model 0-2* -0.13 0.002 <2e-16
Model 1-1%* -0.30 0.002 <2e-16
Model 2-0* -0.29 0.002 <2e-16
Model 1-2%* -0.39 0.002 <2e-16
Model 2-1* -0.38 0.002 <2e-16
Model _2-2* -0.45 0.002 <2e-16
o 0.05 0.0001 <2e-16

13



Table S4: Effect of antagonistic interactions on the variation in plant equitability AH,,.
*the first (second) number is the number of matching (threshold) rules.

R? = 0.33

‘ Parameter | Estimate ‘ Standard Error ‘ p-value

Intercept -0.36 0.002 <2e-16
Iy 18.71 0.23 <2e-16

[ -0.24 0.23 0.31
my 0.03 0.002 <2e-16
myg -0.03 0.002 <2e-16
Cp -0.40 0.001 <2e-16
Ca 0.07 0.001 <2e-16
Model _1-0* 0.32 0.002 <2e-16
Model 0-2* -0.08 0.003 <2e-16
Model 1-1%* -0.07 0.002 <2e-16
Model 2-0* 0.26 0.002 <2e-16
Model 1-2%* -0.08 0.002 <2e-16
Model 2-1* -0.04 0.002 <2e-16
Model _2-2* -0.04 0.002 <2e-16
o 0.01 0.0001 <2e-16

14
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S2.4 Coupling Test

Animals have two opposite effects on plant assemblages. Individually, they have a filtering
effect by introducing fitness differences among species. But collectively, they have a sta-
bilizing effect by introducing some kind of heterogeneity in resources (6). The emergent
effect of the interactions thus depends on the relative importance of these two counter-
acting effects.

We introduce a statistic (/.5) that measures the average interaction strength between
plants and animals:

1S = 1
5= S, (51)

where [;; indicates the interaction strength between plant 7 and animal j. Before starting
the dynamics with bi-trophic interactions, we compute the initial interaction strength 7.5
between plants and animals. To do this, we use plant and animal abundances obtained
with neutral assembly and I;; values subsequently used in the dynamics with interactions.
At the end of the dynamics with interactions (100 generations forward), we compute the
final interaction strength 1.5° between plants and animals, using final abundances of plants
and animals. We record the variation of the interaction strength AIS = IS* — I.S™ due
to the dynamics with bi-trophic interactions. When interactions are mutualistic and
their impact on plants is dominated by the filtering effect, plants survive only if they
encounter some well-adapted mutualists. Interactions should thus produce an increase of
the statistics S. For antagonistic interactions, on the contrary, plants survive only if they
do not encounter well-adapted antagonists, and the statistics IS should then decrease. If
our interpretation is correct, then AS, should be negatively (positively) correlated with

AIS when interactions are mutualistic (resp. antagonistic). This is what we observed

15
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(R? = 0.02 and 0.03 respectively, p<<0.001). Note that I.S is not correlated with S, and

H,, hence the correlation observed here is not spurious.

S2.5 Variance Test

To measure the stabilizing effect of the bi-trophic interactions, we use the statistic VT’
which measures the average variance in trait values among plant individuals, the average
being done among the ¢ traits involved in the interactions. The stabilizing effect should
produce an increase in V1. If our interpretation is correct, then AS, should be positively
correlated with AVT. A possible confounding effect, though, is that V1" is positively cor-
related with S, and H,. Hence, this dependence of V7" should be taken into account when
testing for a correlation between AVT and AS,. To do this, we fit a multiple linear regres-
sion of VI™ against S;' and H} using the simulated non-interacting communities. We then
use this fitted regression to predict V1%, based on the values of S} and H; observed in the

interacting communities. We then define a modified AVT = (VT; VT f%t) [V Th.

bserved ~—

Using this conservative statistic, we find a positive correlation between AVT and AS,

(R? = 0.56 and 0.10 respectively, p<<0.001).

S2.6 Equitability Test

Hillebrand et al. (8) meta-analyzed herbivore exclusion experiments, and found that her-
bivory was reducing (increasing) plant species richness when equitability in plant abun-
dances (measured by H' = H/In(S)) was high (low). We found the same negative rela-
tionship between the equitability before the interactions H™ = H} /In(S™) and AS), (R?
= 0.007 and 0.019 respectively, p<0.001), and this relationship was stronger for antago-
nistic and generalized interactions (i.e., matching interaction rule with one or two traits,

and o>1, R? = 0.008 and 0.09 respectively, p<0.001).

16
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S2.7 Effect of network richness on the impact of bi-trophic inter-
actions

We also investigate the effect of species richness at both the local patch, and the (land-

scape) metacommunity on the variation in plant species richness by linear regressions. As

mentioned in the main text, larger metacommunity richness is associated with stronger

positive effect of both mutualistic and antagonistic interactions on plant species richness,

while larger local richness is associated with stronger negative effect of both interaction

types (R? = 0.01, p<0.001).
S2.8 Temporal turnover

As mentioned in the main text, two statistics of temporal turnover in species composition
from one generation to the next have been computed for both plants and animals, in
both uncoupled and coupled metacommunities. The first statistic is the Jaccard index of

similarity J and is computed as follows:

B ST (nt > O)I(nﬁ’l > O)
S (4l > 0)

(52)

where n! is the number of individuals of species i at generation ¢, and I (n > 0) equals 1
if n > 0 and 0 otherwise.
The second statistic is an abundance-weighted version of the Jaccard index and is
computed as follows:
;o SiI(nt>0)1 (nﬁ_l > 0) (nf +n§_1) (3)
" i (nh 4+ ni) ’

Larger J and J, values indicate a lower temporal turnover.

We investigate how variations in community equitability due to bi-trophic interactions

17
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are correlated with variations in the temporal turnover of communities due to these same
bi-trophic interactions. Temporal turnover is measured with the Jaccard index of similar-
ity across time steps (J) and its abundance-weighted version (J,). Since these statistics
are correlated with H,, in non-interacting communities, variations in f, due to the interac-
tions could mechanically cause variations in J and J,, without any real effect of bi-trophic
interactions on the way community composition varies with time. We hence fit two linear
regressions of J" and J;" against H, using the simulated non-interacting communities. We
then use this fitted regression to predict J};, and J;  based on the values of H}, observed
in the interacting communities. We then define a modified AJ = ( e cerved — J}it) /T4,
and a modified AJ, = (Jg, -~ J, )/ J; . Using these conservative statistics, we
find a positive correlation between AJ and AH, for both mutualistic and antagonistic
interactions (R? = 0.44 and 0.35 respectively, p<0.001), and between AJ, and AH, (R?
= 0.72 and 0.02 respectively, p<0.001). Since J and J, measure temporal similarity, this
means that in communities experiencing a stronger filter from the bi-trophic interactions
(lower AH,), temporal turnover will be larger than expected if bi-trophic interactions
were not modifying community dynamics. In such communities, a core of plant species

are temporally stabilized by the interactions, while a subset of species become satellites

which are temporally unstable (10).

S2.9 Interactions mostly affect rare species

Mutualists and antagonists principally affect the presence and abundance of rare plant
species. When comparing coupled and uncoupled plant communities, the abundance-
weighted measure of similarity .J; is larger than the unweighted measure J in 97% (resp.

95%) of the cases for mutualistic (resp. antagonistic) interactions.

18
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S2.10 Interactions produce a spatially heterogeneous filter

At the end of the coupled metacommunity dynamics, we test whether the filtering effect
of the animal set on the plant one is homogeneous across space. To do this, we compute
the relative fecundity of each plant species in each patch. The relative fecundity of plant
species i equals [P/ >, ;—Ef,f. For each plant species, we count the number of patches where
its relative fecundity is above 1, meaning that it obtains a local competitive advantage
due to bi-trophic interactions. We find that 63% (56%) of the plant species are positively
filtered in at least one patch due to mutualistic (antagonistic) interactions. To perform
this analysis, we used a large grid of 20 x 20 patches, and a subset of parameter values: 1,
and /1, in {0.0005; 0.004}, m,, and m, in {0.005;0.625}, ¢, and ¢, in {0.04;0.64}. We only

considered interaction rules with one trait, using either a threshold rule or a matching rule

with o in {0.015;1}. We performed 10 replicates per combination of parameters values.

S2.11 Robustness of the results

S2.11.1 Effect of the number of patches used in the simulations

To perform this computer intensive study, we used a relatively small number of patches:
a grid of [ x [ patches, with [ = 5. We performed additional simulations with [ = 10,
and [ = 20 for a subset of parameter values: u, = p, = 0.005, m, in {0.001; 0.005;
0.025; 0.125; 0.625}, m, in {0.005; 0.625}, ¢, in {0.01; 0.04; 0.16; 0.64; 1}, and ¢, = 0.01.
For these simulations, we only considered interaction rules with one trait, using either
a threshold rule, or a matching rule with ¢ in {0.015; 0.125; 1; 8}. We performed 10
replicates per combination of parameters values, and computed in each simulation the
variation in plant metacommunity richness due to bi-trophic interactions AS;M, and the
variation in local plant richness AS,. As the number of patches in the metacommunity

increases, the distribution of ASITet converges to zero (Fig. S3A). On the contrary, system

19



size has little impact on the variation in local plant richness due to bi-trophic interactions
(Fig. S3B). This means that for large (and realistic) system sizes, bi-trophic interactions
have a weak effect on metacommunity richness, but change local richness patterns, and
hence the spatial structure of plant diversity.

We additionally performed correlations between AS, and AH, in these simulations
with larger [, and the statistics AS,, and AH, of the main text. We computed the
correlations R2, as well as the slopes and intercepts of reduced major axis regressions,
using the R package "smatr" (11). Correlations were high (R > 0.91), intercepts close to

0 (|intercept| < 0.062), and slopes close to 1 (|slope — 1| < 0.081).

20
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Fig. S3: Effect of system size on bi-trophic impact. Panel A: Distribution of AS;M as a
function of the number [ * [ of patches in the simulations. Panel B: Distribution of AS,
as a function of the number [ % [ of patches in the simulations.

S2.11.2 Symmetric model of interaction

We evaluated the sensitivity of our results to the way we modeled the plants’ impact

on their interactors. We considered alternative models of mutualistic and antagonistic
interactions, replacing Eq. (2) in the main text by:
s

Zjil nglji

fif=1—c,) +ecq s )
. (FIZ 2 nf[uc)

We performed the same simulation analysis of these two models on a subset of the

(54)

parameter grid: we used the same subset as for the analysis studying the variation in
number of patches. We computed the same statistics AS, and AH,, which summarize
the way interactions affect community composition. For these calculations, community
statistics were averaged over the 10 simulated replicates. For each of these statistics, we
computed the correlations R? between their values in the these symmetric models, and

their values in the models reported in the main text, as well as the slopes and intercepts
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of reduced major axis regressions. Correlations were high (R > 0.95), intercepts close to

0 (Jintercept| < 0.062), and slopes close to 1 (|slope — 1| < 0.051).
S2.11.3 Variation in community size

We evaluated the robustness of our results to variations in the animal group sizes N,.
We considered the alternative values N, = 40, and N, = 1000. We performed the same
simulation analysis as in the main text, on a subset of the parameter grid: we used the
same subset as for the analysis studying the variation in number of patches. We computed
the same statistics AS, and AH,,, which summarize the way interactions affect community
composition. For these calculations, community statistics were averaged over the 10
simulated replicates. For each of these statistics, we computed the correlations R? with
the simulations of the main text, as well as the slopes and intercepts of reduced major axis
regressions. Correlations were high (R > 0.89), intercepts close to 0 (|intercept| < 0.072),

and slopes close to 1 (|slope — 1| < 0.124).
S2.11.4 Variation in boundary conditions

We evaluated the robustness of our results to boundary conditions. We considered two
alternative conditions: a reflexive condition, where migrants crossing the boundary return
to their patch of origin; and a condition where migrants crossing the boundary are lost. We
performed the same simulation analysis as in the main text, on a subset of the parameter
grid: we used the same subset as for the analysis studying the variation in number of
patches. We computed the two statistics AS, and AH,. For each of these statistics, we
computed the correlations R? with the simulations of the main text, as well as the slopes
and intercepts of reduced major axis regressions. Correlations were high (R > 0.95),

intercepts close to 0 (|intercept| < 0.024), and slopes close to 1 (|slope — 1| < 0.046).
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S3 Model results - impact on the animal set

We performed similar analyses, focusing this time on the effect of bi-trophic interactions
on the animal set. Overvall, we found very similar results. The analogue of Fig. 2 for
animals is reported in Fig. S4, while the analogue of Fig. S2 is reported in Fig. S5. By
comparing Fig. 2 and Fig. S4, one can note that the main differences is that herbivores are
more positively impacted than plants by bi-trophic interactions when they are specialized
(Panel D in Fig.2, panel E in Fig. S4), while this is the opposite when interactions are
generalized (Panels F in the two figures). Indeed, when they are specialized, herbivores
feed on different plant species and thereby easily coexist (12), while for plants, another
effect is at stake: although herbivore feeding have a stabilizing effect (13), specialized
herbivores also induce fitness differences among species, while generalized herbivores have
a more equalized effect.

The coupling test (see Section S2.4) provides coherent results. When animals are neg-
atively filtered by bi-trophic interactions, the average interaction strength IS increases
for both mutualists and antagonists (R? = 0.07 and 0.02 respectively, p<<0.001): only
the more interacting animals are surviving. The variance test (see Section S2.5) is also
providing coherent results: when animals are positively impacted by bi-trophic interac-
tions, their trait variance increase in both mutualistic and antagonistic cases (R? = 0.11
and 0.005 respectively, p<<0.001). As for plants, larger animal metacommunity richness is
associated with more positive bi-trophic effect, while we observe the opposite correlation
with animal local richness in both mutualistic and antagonistic cases (R? = 0.08 and 0.03
respectively, p<0.001, see Section S2.7). Temporal similarity in animal composition (mea-
sured by J and J,) is also positively correlated with animal equitability H,, as we had

observed for plants (R? = 0.0001 and 0.0001 respectively for J and R? = 0.001 and 0.0001
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for J,, p<0.001, see Section S2.8). Finally, bi-trophic interactions are also mostly impact-
ing rare animal species: when comparing coupled and uncoupled animal communities, the
abundance-weighted measure of similarity J, is larger than the unweighted measure .J in
97% (92%) of the cases for mutualistic (antagonistic) interactions (see Section S2.9).

Threshold Rule Matching Rule - Low ¢ Matching Rule - Large o

A Mutualists B Mutualists C Mutualists

A

D Antagonists E Antagonists F Antagonists

.

T T T
0.02 01 02 05 1 0.02 01 02 0.5 1 0.02 01 02 05 1
coupling ¢, coupling ¢, coupling ¢,

dispersal rate m,

Fig. S4: Relative variation (in %) of animal « diversity between trophically coupled and
uncoupled communities. « diversity is measured as the local animal species richness S,,.
A positive value means that trophically coupled communities are species-richer than un-
coupled ones. Different panels show results for the threshold model with one trait (A
and D), the matching model with one trait and ¢ = 0.015 (B and E), and the matching
model with one trait and ¢ = 1 (C and F). Panels A-C correspond to mutualistic inter-
actions, while panels D-F correspond to antagonistic interactions. Parameter values are
fp = g = 0.004, m, = 0.625, c, = 0.16.
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Fig. S5: Relative variation (in %) of animal § diversity between trophically coupled and
uncoupled communities. [ diversity is measured as the ratio of metacommunity over
local animal richness SI"/S,. Panels A and D display a threshold model of interaction
with one trait; panels B and E show results for the matching model with one trait and
o = 0.015; panels C and F are based on a matching model with one trait and ¢ = 1.
Panels A-C correspond to mutualistic interactions. Panels D-F correspond to antagonistic
interactions. Parameter values are p, = p, = 0.004, m, = 0.625, ¢, = 0.16.

S4 Application to real datasets

S4.1 Approximate Bayesian Computation (ABC) procedure

Since the effects of the interactions depend on the interaction rules used (Tables S1-4),
and given that not all interaction rules lead to realistic ecological networks (14), we want
to constrain our simulation results so that they use realistic network structure. To fit
observed networks, we use Approximate Bayesian Computation (15). It consists here in
six steps (see Fig. 1 in the main text).

First, we simulate a neutral uncoupled metacommunity of plants and animals to serve
as a benchmark to quantify bi-trophic impact on the plant set, drawing at random all

the model parameters in uniform prior distributions. Prior distributions express our
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uncertainty on the parameters values before confronting them to real data.

Second, starting from this neutral metacommunity, we simulate a coupled dynamics of
plants and animals using Eqgs. (1) and (2) of main text, choosing one of the 8 interaction
rules in turn, and drawing at random all the additional model parameters (linked to the
interaction) in uniform prior distributions. The prior distributions were tailored to each
dataset so as to reduce computing time. Indeed, only some areas of the parameter space
are likely to produce networks similar to the observed ones. The priors used for each
dataset are reported in Table S5.

Third, at the end of the dynamics, a network of interactions is simulated with the
same total number of interactions N°* as in the real dataset. N animals are drawn
at random proportionally to their local abundance, and they are simulated to interact
with one of the plant species. An animal j interacts with a plant ¢ proportionally to n?l;;
where I;; is computed with the model parameters used in the simulation.

Fourth, four summary statistics of the simulated networks are computed: the plant
species richness in the network S7, the animal species richness in the network S7, the
nestedness index Ne,, and the specialization index ¢.

Fifth, the computed network statistics of the simulations are used to select the best-fit

< 5 and < 5, and

s obs
Sa - Sa

simulations. The simulations are retained if both ’S; — Sgbs
the simulation procedure goes on until a total of 2000 such simulations are produced. Out
of these 2000 simulations, 200 are retained which statistics ¢, and Ne, lead to the smallest
Euclidean distance to the observed values (¢°bs, N e;bs). Each statistic is normalized before
performing this selection (15).

Sixth, these retained simulations are used to compute the approximate posterior dis-
tribution of the statistics AS,, AH,, AJ, and AJ,, which describe the impact of the

interactions on plant composition and dynamics. A large part of the variation in the pos-
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terior distribution of these statistics is explained by the variation among the simulations
of the two model parameters m, and c,. Therefore, approximate posterior distributions
are plotted as a function of these two parameters (see the section “Predicted effect of the

interactions in real networks based on best-fit simulations” below).
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Table S5: Priors used for the Approximate Bayesian Computation.

In (my) is always drawn in [In(0.001) ; In(0.2)]. in (c,) is always drawn in [In(0.01) ; In(1)].

In (o) is always drawn in [In(0.01) ; In(10)].

Datasets Priors
Code Interaction Type Citation in (,u;,,) In(pa) In(mg)
ARIZ Pollination Arizmendi and Ornelas (1990) [In(0.0001) ; In(0.02)] [In(0.0001) ; In(0.011)] [In(0.001) ; In(0.2)]
BAHE® Pollination Barrett and Helenurm (1987) [In(0.0001) ; In(0.02)] [In(0.1002) ; In(0.5)] [In(0.001) ; In(0.2)]
BAUE Pollination Bauer (1983) [In(0.0001) ; 1n(0.02)] [In(0.0005) ; In(0.02)] [In(0.001) ; In(0.2)]
BEZE Pollination Bezerra et al. (2009) [In(0.0001) ; 1n(0.02)] [In(0.0001) ; In(0.018)] [In(0.001) ; In(0.2)]
BRIA Pollination Brian (1957) [In(0.0002) ; 1n(0.02)] [In(0.0001) ; In(0.01)] [In(0.001) ; In(0.2)]
BRHO Pollination Brown and Hopkins (1995) [In(0.0001) ; In(0.02)] [In(0.0002) ; In(0.02)] [In(0.001) ; In(0.2)]
DIHI® Pollination Dicks et al. (2002) [In(0.0002) ; In(0.007)] [In(0.01) ; In(0.02)] [In(0.11) ; In(0.2)]
DISH* Pollination Dicks et al. (2002) [In(0.0001) ; In(0.02)] [In(0.002) ; In(0.02)] [In(0.11) ; In(0.2)]
ELBE* Pollination Elberling and Olesen (1999) [In(0.0015) ; In(0.018)] [In(0.47) ; In(0.6)] [In(0.001) ; In(0.2)]
HARD Pollination Harder (1985) [In(0.0001) ; In(0.02)] [In(0.0001) ; 1n(0.013)] [In(0.001) ; In(0.2)]
MACI Pollination Macior (1978) [In(0.0001) ; In(0.02)] [In(0.0001) ; In(0.015)] [In(0.001) ; In(0.2)]
MEMM®* Pollination Memmott (1999) [In(0.0001) ; 1In(0.02)] [In(0.0252) ; 1n(0.239)] [In(0.001) ; In(0.19)]
OLLE* Pollination Ollerton et al. (2003) [In(0.0001) ; 1n(0.013)] | [In(0.0074) ; In(0.02)] [In(0.051) ; In(0.2)]
SCHM* Pollination Schemske (1978) [In(0.0001) ; In(0.02)] [In(0.0036) ; In(0.02)] [In(0.001) ; In(0.2)]
SNOW Pollination Snow and Snow (1972) [In(0.0002) ; In(0.02)] [In(0.0001) ; In(0.012)] [In(0.001) ; In(0.2)]
VAZ1*® Pollination Vazquez and Simberloff (2002) [In(0.0001) ; In(0.02)] [In(0.0011) ; In(0.02)] [In(0.001) ; In(0.2)]
vAza® Pollination Vazquez and Simberloff (2002) [In(0.0001) ; In(0.011)] [In(0.0018) ; In(0.02)] [In(0.001) ; In(0.2)]
VAz3® Pollination Vazquez and Simberloff (2002) [In(0.0001) ; In(0.02)] [In(0.001) ; In(0.02)] [In(0.001) ; In(0.2)]
VAZ4% Pollination Vazquez and Simberloff (2002) [In(0.0001) ; In(0.02)] [In(0.0017) ; In(0.02)] [In(0.001) ; In(0.2)]
vazs® Pollination Vazquez and Simberloff (2002) [In(0.0001) ; In(0.02)] [In(0.0007) ; In(0.02)] [In(0.001) ; In(0.2)]
vAze® Pollination Vazquez and Simberloff (2002) [In(0.0001) ; In(0.02)] [In(0.001) ; In(0.02)] [In(0.001) ; In(0.2)]
vazr® Pollination Vazquez and Simberloff (2002) [In(0.0001) ; In(0.02)] [In(0.0007) ; In(0.02)] [In(0.001) ; In(0.2)]
VAZ3® Pollination Vazquez and Simberloff (2002) [In(0.0001) ; In(0.02)] [In(0.0009) ; In(0.02)] [In(0.001) ; In(0.2)]
HELG Arbuscular Mycorrhizal Fungi Helgason et al. (2002) [In(0.0001) ; In(0.02)] [In(0.0001) ; In(0.02)] [In(0.001) ; In(0.2)]
OPIO Arbuscular Mycorrhizal Fungi Opik et al. (2008) [In(0.0001) ; 1n(0.018)] [In(0.001) ; In(0.02)] [In(0.001) ; In(0.2)]
OPIY Arbuscular Mycorrhizal Fungi Opik et al. (2008) [In(0.0001) ; 1In(0.02)] [In(0.0008) ; In(0.02)] [In(0.001) ; In(0.2)]
wWU15 Arbuscular Mycorrhizal Fungi Wu et al. (2007) [In(0.0001) ; In(0.02)] [In(0.0001) ; In(0.02)] [In(0.001) ; In(0.2)]
wUuU16 Arbuscular Mycorrhizal Fungi Wu et al. (2007) [In(0.0001) ; In(0.02)] [In(0.0001) ; In(0.02)] [In(0.001) ; In(0.2)]
JOSW Endophytic Fungi Joshee et al. (2009) [In(0.0001) ; In(0.01)] [In(0.006) ; In(0.02)] [In(0.01) ; In(0.2)]
JOSS Endophytic Fungi Joshee et al. (2009) [In(0.0001) ; In(0.01)] [In(0.0014) ; In(0.02)] [In(0.018) ; In(0.2)]
MUTD Endophytic Fungi Murali et al. (2007) [In(0.0001) ; In(0.02)] [In(0.0005) ; In(0.02)] [In(0.001) ; In(0.2)]
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MUTW

Endophytic Fungi

Murali et al. (2007)

[1n(0.0001) ; In(0.02)]

[In(0.0006) ; In(0.02)]

[In(0.001) ; In(0.2)]

MUDD

Endophytic Fungi

Murali et al. (2007)

[1n(0.0001) ; 1n(0.019)]

[In(0.0009) ; In(0.02)]

[In(0.001) ; In(0.2)]

MUDW

Endophytic Fungi

Murali et al. (2007)

[In(0.0001) ; 1n(0.02)]

[In(0.0012) ; In(0.02)]

[In(0.001) ; In(0.2)]

PETR

Endophytic Fungi

Petrini (1984)

[In(0.0001) ; 1n(0.02)]

[In(0.0003) ; In(0.02)]

[In(0.001) ; In(0.2)]

SURB

Endophytic Fungi

Suryanarayanan et al. (2005)

[In(0.0001) ; In(0.02)]

[In(0.0001) ; 1n(0.019)]

[In(0.001) ; 1n(0.2)]

SURC

Endophytic Fungi

Suryanarayanan et al. (2005)

[In(0.0001) ; 1n(0.02)]

[In(0.0001) ; 1n(0.019)]

[In(0.001) ; 1n(0.2)]

SURD

Endophytic Fungi

Suryanarayanan et al. (2005)

[1n(0.0001) ; In(0.02)]

[In(0.0001) ; In(0.01)]

[In(0.001) ; In(0.2)]

suTJ

Endophytic Fungi

Sutjaritvorakul et al. (2010)

[1n(0.0001) ; In(0.02)]

[In(0.0001) ; In(0.02)]

[In(0.001) ; In(0.2)]

BACH *

Herbivory

Basset and Charles (2000)

[In(0.0001) ; In(0.006)]

[In(0.4001) ; In(0.6)]

[In(0.003) ; In(0.2)]

BASA®

Herbivory

Basset and Samuelson (1996)

[In(0.0001) ; In(0.02)]

[In(0.006) ; In(0.02)]

[In(0.035) ; In(0.2)]

BERK

Herbivory

Berkov and Tavakilian (1999)

[In(0.0001) ; In(0.017)]

[In(0.0015) ; In(0.02)]

[In(0.001) ; 1n(0.2)]

HANS

Herbivory

Hansen and Ueckert (1970)

[In(0.0001) ; 1n(0.02)]

[In(0.0001) ; In(0.014)]

[In(0.001) ; In(0.2)]

JANZ®

Herbivory

Janzen (1980)

[In(0.006) ; 1n(0.199)]

[In(0.1108) ; In(0.5)]

[In(0.012) ; In(0.5)]

JOEA®

Herbivory

Joern (1979)

[1n(0.0002) ; In(0.02)]

[In(0.0003) ; In(0.02)]

[In(0.001) ; In(0.2)]

JOEM™

Herbivory

Joern (1979)

[In(0.0003) ; In(0.02)]

[In(0.0007) ; In(0.02)]

[In(0.001) ; In(0.2)]

JOER

Herbivory

Joern (1985)

[1n(0.0004) ; In(0.02)]

[In(0.0013) ; In(0.02)]

[In(0.001) ; In(0.2)]

NA96C

Herbivory

Nakagawa et al. (2003)

[In(0.0001) ; In(0.02)]

[In(0.0005) ; In(0.02)]

[In(0.001) ; In(0.2)]

NA98®

Herbivory

Nakagawa et al. (2003)

[In(0.0001) ; In(0.02)]

[In(0.0012) ; In(0.02)]

[In(0.001) ; In(0.2)]

NOMI

Herbivory

Novotny et al.(2005a)

[In(0.0001) ; In(0.02)]

[In(0.0001) ; 1n(0.017)]

[In(0.001) ; In(0.2)]

NOovVO©

Herbivory

Novotny et al.(2005b)

[1n(0.0001) ; In(0.02)]

[In(0.0006) ; In(0.02)]

[In(0.001) ; In(0.2)]

OTTE

Herbivory

Otte and Joern (1977)

[1n(0.0001) ; In(0.02)]

[In(0.0001) ; 1n(0.019)]

[In(0.001) ; In(0.2)]

SHEL

Herbivory

Sheldon and Rogers (1978)

[1n(0.0001) ; In(0.02)]

[In(0.0001) ; In(0.014)]

[In(0.001) ; In(0.2)]

UECK®

Herbivory

Ueckert and Hansen (1971)

[1n(0.0001) ; In(0.02)]

[In(0.0001) ; 1n(0.019)]

[In(0.001) ; In(0.2)]

*Datasets found in the Interaction Web Database (http://www.nceas.ucsb.edu/interactionweb/).

*Datasets found in Ref. (16).

¢Datasets found in Ref. (17).

*For this dataset, we used in the simulations .J,=2000, .J,=400 because S, is larger

than 200.
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S4.2 Predicted effect of the interactions in real networks based
on best-fit simulations

The information available in the data was not sufficient to fully parameterize our meta-
community model, and hence to precisely quantify the effect of bi-trophic interactions on
plant and animal richness in these datasets. It was however sufficient to greatly constrain
our simulations, so that general trends could be evidenced. We illustrate this with an
example dataset (BEZE, see Table S5). This dataset was chosen because it contains the
largest number of recorded interactions. The limits of our inference approach that we are
pointing here are thus also happening in the other datasets. Thanks to the ABC proce-
dure, some parameters are relatively well inferred in that they have a reasonably peaked
posterior distribution: f,, p, and o (Fig. S6A,B,D). All the interaction rules are rep-
resented in the retained simulations (Fig. S6C), which mean that the observed network
structure can be reproduced in multiple ways. Note that this explains the presence of two
peaks in the posterior distribution of parameter o: the peak of low ¢ value is obtained in
models without threshold rules, while the other peak is obtained when one or two thresh-
old rules are modeled on top of the matching rules. The four remaining parameters m,,,
Ma, ¢p and c, are less well inferred by our procedure in that they have wider posterior
distribution hence a large remaining uncertainty on parameters values (Fig. S6E-H). The
variance in these parameters values explained a large proportion of the variance of AS,
and AS, observed in the simulations. More precisely, variations in m, and ¢, were highly
correlated with variations in AS, in the simulations, while variations in m, and c, were
highly correlated with variations in AS,. This is the reason why we plot our predictions
regarding the bi-trophic impact on plants (animals) AS, (AS,) as a function of m, and
¢ (mg and ¢,) in Figs. 2, S2, S4 and S5.

We used a kriging technique to interpolate AS, as a function of m, and ¢, (R library
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"fields", (18)). This interpolation explained on average 70% (64%, 45%) of the variance
for plants-pollinators datasets (plant-fungi, plant-insect herbivores). Similarly, the inter-
polation of AS, as a function of m, and ¢, explained on average 33% (40%, 30%) for
plants-pollinators datasets (plant-fungi, plant-insect herbivores). We represent in Figs.
S11- S16 the krigged values of AS, and AS, predicted by the simulations fitted to each
dataset. In Fig. 3, these predictions are averaged for each dataset type (plant-pollinators,
plants-fungi, and plants-insect herbivores). Similar results for AH, AJ, AJ,, and AS™/S
are reported in Figs. S7- S10. The temporal similarity is expected to decrease for an-
tagonistic interactions; the same happens for mutualistic interactions only for realistically
strong coupling (¢, and ¢, > 0.03) (Fig. S8). When using the abundance-weighted
measure of turnover .J,, the temporal similarity is predicted to be weakly affected by
bi-trophic interactions (Fig. S9). Overall, our results hence suggest that the temporal
turnover in plant and animal sets should be larger due to bi-trophic interactions, this
being due mainly to an increased turnover of rare species.

All simulations were performed in C-++, and statistical analyses with the R software

(R development Core Team 2009).
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Fig. S6: Approximate posterior distribution of the model parameters. Panels A-B: ap-
proximate posterior distribution for parameters p, and p,. Panel C: posterior weight
of the different interaction rules. The length of each square side is proportional to the
number of retained simulations with the corresponding number of matching and thresh-
old rules. Panel D: approximate posterior distribution for parameters o. Panels E-H:
approximate posterior distribution for parameters m,, m,, ¢, and c,.
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Fig. S7: Relative variation of plant and animal Shannon’s index H between coupled and
uncoupled communities in simulations which best fit observed network structure in real
datasets. Panels A-C: results for plants. Panels D-F: results for animals. Panels A and D:
Plant-pollinators datasets (n=23). Panels B and E: Plant-fungi datasets (n=16). Panels
C and F: Plant-insect herbivores datasets (n=15). 41% of the variance is explained by
the interpolation on average in each dataset.
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Fig. S8: Relative variation of plant and animal temporal similarity J between coupled
and uncoupled communities in simulations which best fit observed network structure in
real datasets. Panels A-C: results for plants. Panels D-F: results for animals. Panels A
and D: Plant-pollinators datasets (n=23). Panels B and E: Plant-fungi datasets (n=16).
Panels C and F: Plant-insect herbivores datasets (n=15). 21% of the variance is explained
by the interpolation on average in each dataset.
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Fig. S9: Relative variation of plant and animal temporal similarity J, between coupled
and uncoupled communities in simulations which best fit observed network structure in
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by the interpolation on average in each dataset.
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communities in simulations which best fit observed network structure in real plant-insect
herbivores datasets.
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