

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2011

Metal-Ion-Dependent Folding of a Uranyl-Specific DNAzyme: Insight into Function from Fluorescence Resonance Energy Transfer Studies

Ying He^[b] and Yi Lu^{*[a, b]}

chem_201100352_sm_miscellaneous_information.pdf

Figure S1. Sample emission spectra of Cy3 donor and Cy5 acceptor of the $UO_2^{2^+}$ -specific DNAzyme, and E_{FRET} obtained by the (ratio)_A method in the presence of incressing concentrations of metal ions. The sample spectra shown here are from Mg²⁺ titrations in 50 mM NaNO3 and 50 mM Na-MES buffer (pH 5.5) containing 100 mM [Na⁺] when the stem II and III are labeled with Cy5 and Cy3, respectively (see the labeling scheme in Figure 1e): a) emission spectra of Cy3 (at 562 nm) and Cy5 (at 666 nm) when system is irradaited at Cy3 excitation wavelength of 513 nm. With increasing Mg²⁺ concentration, the 562 nm peak intensity decreases while the 666 nm peak intensity increase, indicating an increased energy transfer process; b) emission spectra of Cy5 when system is irradaited at Cy5 excitation wavelength of 648 nm. With increasing Mg²⁺ concentration obtained from b) and c) using (ratio)_A method. With increasing Mg²⁺ concentration, the E_{FRET} increases, indicating a folding process. The E_{FRET} values obtained from the (ratio)_A method excludes the dilution effect shown in the fluorescence spectra in a)-c), representing a more accurate FRET change.

 M^{2^4} /mM Figure S2. Plots of E_{FRET} versus the concentrations of Group IIA metal-ions (Mg²⁺, Ca²⁺, Sr²⁺) of the UO₂²⁺-specific DNAzyme in 50 mM NaNO3 and 50 mM Na-MES buffer (pH 5.5) containing 100 mM [Na⁺] when the stem II and III are labeled with Cy5 and Cy3, respectively (see the labeling scheme in Figure 1e).