Dinucleotide repeat polymorphism at the 3' end of the LDL receptor gene

Giovanni Zuliani and Helen H.Hobbs

Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235, USA

Source/Description: A polymorphic dinucleotide tandem repeat (dTùdA) is located in exon 18 of the LDL receptor gene (at nucleotide 4780) (1). Two oligonucleotides homologous to the sequences flanking the tandem repeat (GZ-7 and GZ-8) were used to amplify the region and generate a fragment of the predicted size of 106 bp.

Primer Sequences:

GZ-7 = CACTTTGTATATTGGTTGAAACTGT GZ-8 = CACTGAACAAATACAGCAACCAGGG

Frequency: Estimated in 27 unrelated Caucasian American individuals:

	Number of	
Allele (nt)	(TA) Repeats	Frequency
112	10	0.20
108	8	0.10
106	7	0.70

The heterozygosity index was 48.5%.

Mendelian Inheritance: Co-dominant segregation was observed in two families with a total of seven informative meiosis.

Chromosomal Localization: The LDL receptor gene has been assigned to chromosome 19p13.1-p13.3. (2).

Other Comments: The PCR reaction was performed on genomic DNA as previously described (3) with the following modifications: 1) the DNA was denatured at 96°C for 1 min, 2) annealing and extension was performed at 68°C for 3 min, and 3) the number of cycles was 20. PCR products were fractionated on an 8% denaturing polyacrylamide gel and the size of the alleles was determined by comparison with end-labeled MspI digested pBR322 DNA. The analysis of a Puerto Rican family with familial hypercholesterolemia showed an additional allele of 114 nt (11 repeats) not seen in any Caucasian American individuals.

References: 1) Yamamoto, T. et al. (1984) Cell 39, 27-38. 2) Lindgren, N.V. et al. (1985) Proc. Natl. Acad. Sci. USA 82, 8567-8571. 3) Saiki, R.K. et al. (1988) Science 230, 487-491.

Pvull and Xhol/EcoRV polymorphisms adjacent to the α A-crystallin (CRYA1) gene on human chromosome 21

Michael B.Petersen, Cynthia J.Jaworski¹, John G.Lewis and Stylianos E.Antonarakis

Department of Pediatrics (Genetics Unit), The Johns Hopkins University School of Medicine, Baltimore, MD 21205 and ¹Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA

Source/Description: An 1800 bp KpnI/HindIII single copy genomic DNA insert in bacteriophage M13 mp19 was used as a hybridization probe. This clone (p α A-T2) contains a fragment of the human α A-crystallin gene, that includes exons 1 and 2 and a portion of intron 2 (1).

Polymorphisms: After PvuII digestion the pαA-T2 probe reveals a VNTR polymorphism with at least 4 alleles between 7.8 kb and 10.5 kb. A constant fragment of 1.5 kb is also observed. A double digest with XhoI/EcoRV reveals a second DNA polymorphic system with allelic fragments of A1: 5.2 and 14.0 kb, A2: 16.5 and 21.0 kb and A3: 17.0 kb.

Frequency: The observed heterozygosity of the PvuII VNTR polymorphism in the 40 CEPH families is 34%. The frequency of the alleles of the XhoI/EcoRV polymorphism in 183 CEPH chromosomes studied is A1: 13 (7.1%); A2: 169 (92.3%); A3: 1 (0.5%), with PIC value of 0.12.

Not Polymorphic For: BgIII, EcoRI, HincII, HindIII, KpnI, PstI, SstI, StuI, TaqI and XbaI (5 unrelated individuals tested).

Chromosomal Localization: The CRYA1 gene maps on 21q22.3 (2).

Mendelian Inheritance: Demonstrated in 40 CEPH families.

Probe Availability: Contact C.J.Jaworski.

Acknowledgements: M.B.P. was supported by Danish Research Council and Academy and with a Fulbright Fellowship. S.E.A. was supported by an N.I.H. Grant.

References: 1) Jaworski, C.J. and Piatigorsky, J. (1989) Nature 337, 752-754. 2) Hawkins, J.W. et al. (1987) Hum. Genet. 76, 375-380.

VNTR PvuII