Phosphorylation but not Alternative Splicing nor Proteolytic Degradation Is Conserved in Human and Mouse Cardiac Troponin T

Jiang Zhang,^{a,b} Han Zhang,^a Serife Ayaz-Guner,^a Yi-chen Chen,^a Xintong Dong,^a Qingge Xu,^{a, c}

Ying Ge a,c *

^a Human Proteomics Program, School of Medicine and Public Health, ^b School of Pharmacy,
^c Department of Cell and Regenerative Biology, School of Medicine and Public Health,
University of Wisconsin-Madison, Madison, WI, 53706, USA

Running title: Top-Down Mass Spectrometry of Human and Mouse Cardiac Troponin T

*Corresponding author:

Dr. Ying Ge, Human Proteomics Program and Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Ave., SMI 130, Madison, WI, 53706, USA. Tel: (+1) 608-263-9212, Fax: (+1) 608-265-5512, E-mail: ge2@wisc.edu

Supplemental Figures

	Exon	2	3	4	5 (Fetal)	6	7	8				
1	MSDIEE	VVEEYEEE	EQEE	AAVEEE	EDWREDEDE	DEEAAEEDAEAEAETEETRA	EEDEEEEEAKEAI	EDGPM	70	P45379	TNNT2	HUMAN
1	MSDIEE	VVEEYEEE	EOEE	AAVEE-		- DEEAAEEDAEAEAETEETRA	EEDEEEEEAKEAI	EDGPM	60	P45379-6	TNNT2	HUMAN
1	MSDIEE	VVEEYEEE	EQEE	AAVEEE	-DWREDEDE		EEDEEEEEAKEAI	EDGPM	69	P45379-2	TNNT2	HUMAN
1	MSDIEE	VVEEYEEE	EQEE				EEDEEEEEAKEAI	EDGPM	55	P45379-7	TNNT2	HUMAN
1	MSDIEE	VVEEYEEE	EQEE	AAVEEE	EDWREDEDE		E-DEEEEEAKEAI	EDGPM	69	P45379-3	TNNT2	HUMAN
1	MSDIEE	VVEEYEEE	EQEE	AAVEEE	EDWREDEDE		EEDEEEEEAKEAI	EDGPM	70	P45379-1	TNNT2	HUMAN
1	MSDIEE	VVEEYEEE	EQEE	AAVEEE	-DWREDEDE		E-DEEEEEAKEAI	EDGPM	68	P45379-4	TNNT2	HUMAN
1	MSDIEE	VVEEYEEE	EQEE	EE	-DWREDEDE		EEDEEEEEAKEAI	EDGPM	65	P45379-8	TNNT2	HUMAN
1	MSDIEE	VVEEYEEE	EQEE	AAVEEE	EDWREDEDE	- DEEAAEEDAEAEAETEETRA	EEDEEEEEAKEAI	EDGPM	70	P45379-5	TNNT2	HUMAN
1	MSDIEE	VVEEYEEE	EQEE	AAVEEE	EDWREDEDE	DEEAAEEDAEAEAETEETRA	EEDEEEEEAKEAI	EDGPM	70	P45379-9	TNNT2	HUMAN
	•										-	
	8		5			10		11				
71	EESKPK	PRSFMPNI	VPPK	IPDGEF	RVDFDDIHRK	RMEKDLNELQALIEAHFENR	KKEEEELVSLKDI	RIERR	140	P45379	TNNT2_	HUMAN
61	EESKPK	PRSFMPNI	VPPK	IPDGEF	RVDFDDIHRK	RMEKDLNELQALIEAHFENR	KKEEEELVSLKDI	RIERR	130	P45379-6	TNNT2_	HUMAN
70	EESKPK	PRSFMPNI	VPPK	IPDGEF	RVDFDDIHRK	RMEKDLNELQALIEAHFENR	KKEEEELVSLKDI	RIERR	139	P45379-2	TNNT2_	HUMAN
56	EESKPK	PRSFMPNI	VPPK	IPDGEF	RVDFDDIHRK	RMEKDLNELQALIEAHFENR	KKEEEELVSLKDI	RIERR	125	P45379-7	TNNT2_	HUMAN
70	EESKPK	PRSFMPNI	VPPK	IPDGEF	RVDFDDIHRK	RMEKDLNELQALIEAHFENR	KKEEEELVSLKDI	RIERR	139	P45379-3	TNNT2_	HUMAN
71	EESKPK	PRSFMPNI	VPPK	IPDGEF	RVDFDDIHRKI	RMEKDLNELQALIEAHFENR	KKEEEELVSLKDI	RIERR	140	P45379-10	JTNNT2_	HUMAN
69	EESKPK	PRSFMPNI	VPPK	IPDGEF	RVDFDDIHRKI	RMEKDLNELQALIEAHFENR	KKEEEELVSLKDI	RIERR	138	P45379-4	TNNT2_	HUMAN
66	EESKPK	PRSFMPNI	VPPK	IPDGEF	RVDFDDIHRKI	RMEKDLNELQALIEAHFENR	KKEEEELVSLKDI	RIERR	135	P45379-8	TNNT2_	HUMAN
71	EESKPK	PRSFMPNI	VPPK	IPDGEF	RVDFDDIHRK	RMEKDLNELQALIEAHFENR	KKEEEELVSLKDI	RIERR	140	P45379-5	TNNT2_	HUMAN
71	EESKPK	PRSFMPNI	VPPK	IPDGEF	RVDFD			ERR	101	P45379-9	TNNT2_	HUMAN
		11				12	13	14				
141	RAERAE	QQRIRNEF	EKER	QNRLAR	ERARREEEE	IRRKAEDEARKKKALSNMMH	FGGYIQKQAQTE	RKSGK	210	P45379	TNNT2	HUMAN
131	RAERAE	QQRIRNEF	EKER	QNRLAP	ERARREEEE	IRRKAEDEARKKKALSNMMH	FGGYIQKQAQTEI	RKSGK	200	P45379-6	TNNT2	HUMAN
140	RAERAE	QQRIRNEF	EKER	QNRLAP	ERARREEEE	IRRKAEDEARKKKALSNMMH	FGGYIQKQAQTEI	RKSGK	209	P45379-2	TNNT2	HUMAN
126	RAERAE	QQRIRNEF	EKER	QNRLAR	ERARREEEE	IRRKAEDEARKKKALSNMMH	FGGYIQKQAQTEI	RKSGK	195	P45379-7	TNNT2	HUMAN
140	RAERAE	QQRIRNEF	EKER	QNRLAP	ERARREEEEI	IRRKAEDEARKKKALSNMMH	FGGYIQKQAQTEI	RKSGK	209	P45379-3	TNNT2	HUMAN
141	RAERAE	QQRIRNEF	EKER	QNRLAP	ERARREEEE	IRRKAEDEARKKKALSNMMH	FGGYIQKTEI	RKSGK	207	P45379-1	DTNNT2	HUMAN
139	RAERAE	QQRIRNEF	EKER	QNRLAP	ERARREEEEI	IRRKAEDEARKKKALSNMMH	FGGYIQKQAQTEI	RKSGK	208	P45379-4	TNNT2	HUMAN
136	RAERAE	QQRIRNEF	EKER	QNRLAP	ERARREEEEI	IRRKAEDEARKKKALSNMMH	FGGYIQKQAQTEI	RKSGK	205	P45379-8	TNNT2	HUMAN
141	RAERAE	QQRIRNEF	EKER	QNRLAP	ERARREEEEI	IRRKAEDEARKKKALSNMMH	FGGYIQK-AQTEI	RKSGK	209	P45379-5	TNNT2	HUMAN
102	RAERAE	QQRIRNEF	EKER	QNRLAE	ERARREEEE	NRRKAEDEARKKKALSNMMH	FGGYIQKQAQTEI	RKSGK	171	P45379-9	TNNT2	HUMAN
						15		16				
011	DOTTOT				NEDOT DEVI			TO THE		D45070		
211	ROTERE	KKKKILAP	RRKV	LAIDHI	INEDQLREKA	ELWQSI INLEAEKFDLQEK	FRQQKIEINVLR	INTIND	280	P45379	TNNT2_	HUMAN
201	ROTERE	KKKKILAP	RRKV	LAIDHI	INEDQLREKA	ELWQSI INLEAEKFDLQEK	FRQQKIEINVLR	NRIND	270	P45379-6	TNNT2_	HUMAN
210	ROTERE	KKKKILAP	RRKV	LAIDHI	INEDQLREKA	ELWQSI INLEAEKFDLQEK	FRQQKIEINVLR	NRIND	279	P45379-2	TNNT2_	HUMAN
210	ROTERE	KKKKILAP	RRAV	LAIDHI	MEDQLREKA	ELWOSTINLEAEKFDLOEK	FRQQKIEINVLR	IDIND	205	P45579-7	TINNT2_	HUMAN
210	ROTERE	KKKKTT AF	RRAV	LAIDHI	MEDQLREKA	ELWOSTINLEAEKFDLOEK	FRQQKIEINVLR	IDIND	279	P45379-3		HUMAN
200	ROTERE	VVVVTT NE	DDVU	TATOHI	NEDQLKEKA	ELWOSTINLEAERFDLOER	FROORVEINVLRI	IDIND	2770	P45379-1		LITMAN
209	ROTERE	NUNNTI NE	DDVU	TATOHI	NEDQLKEKA	ELWOSTINLEAERFDLOEK	FROORAETMATH	IDIND	270	P45379-4		LITMAN
206	ROTERE	KKKKILAP	DDVU	LAIDHI	NEDQLREKA	ELWOSTINLEAEKFDLOEK	FROOVVEINVLR	IRIND	275	P453/9-8	TINNT2_	HUMAN
172	ROTERE	KKKKLT'YE	PPKV		NEDOLBEKA	ELWOSTINLEAEKEDLOEK	EKOOKAEIMATBI EVÕÕUIEIMATBI	ARIND	2/9	P45379-5	TNNT2	HIMAN
	1.0									110070 0		
	16	17										
281	NQKVSK	TRGKAKVI	GRWK	298	P45379	TNNT2_HUMAN						
271	NQKVSK	TRGKAKVI	GRWK	288	P45379-6	TNNT2_HUMAN						
280	NOKVSK	TRGKAKVI	GRWK	297	P45379-2	TNNT2_HUMAN						
266	NOKVSK	TRGKAKVI	GRWK	283	P45379-7	TNNT2_HUMAN						
280	NORVSK	TRGKAKVI	GRWK	297	P453/9-3	TINTZ_HUMAN						
278	NORVSK	TRGKAKVI	GRWK	295	P453/9-10	TINNT2_HUMAN						
219	NORVSK	TRGKAKVI	GRWK	296	P453/9-4	TNNT2_HUMAN						
2/0	NORVSK	TRGRAKVI	GRWK	293	P403/9-8	TINNTZ_HUMAN						
200	NORVER	TRGNARVI	GRWK	29/	F433/9-5	THNTZ_HUMAN						
242	NOUNSK	TROVAVA	GRWK	259	r433/9-9	INNIZ_HUMAN						

Figure S1. Amino acid sequence alignment of multiple hcTnT isoforms. Sequences were retrieved from UniProtKB/Swiss-Prot database. Isoform 1, accession number P45379 or P45379-1, also known as TNT, which has been chosen as the 'canonical' sequence; Isoform 2, P45379-2; Isoform 3, P45379-3; Isoform 4, P45379-4; Isoform 5, P45379-5; Isoform 6, P45379-6 also known as TNT3; Isoform 7, P45379-7, also known as TNT4; Isoform 8, P45379-8, also known as TNT2; Isoform 9, P45379-9; Isoform 10, P45379-10. Exon numbers and boundaries are indicated. Shaded areas indicate the conserved sequence regions.

	Exon	2	3	4	5 (Fetal)	6		7	
mcTnT_D	SDAER	EVVEEY	EEEQEI	EAVE		- EQEEAVEEEE	AGGAEPEPEGE	AETEEANVEE	50
mcTnT	SDAER	EVVEEY	EEEQE			-EQEEAVEEEE	AGGAEPEPEGE	AETEEANVEE	46
mcTnT F	SDAER	EVVEEY	EEEQE			-EQEEAVEEEE	AGGAEPEPEGE	AETEEANVEE	46
mcTnT A	SDAER	EVVEEY	EEEQEI	EAVE	EEDWSEEEE	DEQEEAVEEEE	AGGAEPEPEGE	AETEEANVEE	60
mcTnT_c	SDAER	VVEEY	EEEQ-	E	EEDWSEEEE	DEQEEAVEEEE	AGGAEPEPEGE	AETEEANVEE	56
mcTnT B	SDAER	EVVEEY	EEEQ-	E	EEDWSEEEE	DEQEEAVEEEE	AGGAEPEPEGE	AETEEANVEE	56
-		7		8		9		10	
mcTnT D	VGPDE	EEAKDA	EEGPV	EDTK	PKPSRLFMP	NLVPPKIPDGE	RVDFDDIHRKR	VEKDLNELQT	110
mcTnT	VGPDE	EAKDA	EEGPV	EDTK	PKPSRLFMP	NLVPPKIPDGE	RVDFDDIHRKR	VEKDLNELOT	106
mcTnT F	VGPDE	EAKDA	EEGPV	EDTK	PKPSRLFMP	NLVPPKIPDGE	RVDFDDIHRKR	VEKDLNELOT	106
mcTnT A	VGPDE	EAKDA	EEGPV	EDTK	PKPSRLFMP	NLVPPKIPDGE	RVDFDDIHRKR	VEKDLNELOT	120
mcTnT_c	VGPDE	EAKDA	EEGPV	Ертк	PKPSRLEMPI	NLVPPKTPDGE	RVDFDDTHRKR	VEKDINELOT	116
тотот в	VGPDE	EAKDA	EEGPV	EDTK	PKPSRLFMP	NLVPPKTPDGE	RVDFDDTHRKR	VEKDINELOT	116
								, DRD DRD Dg T	
		10				11		12	
mcTnT_D	LIEAH	IFENRK	KEEEE	LISL	KDRIEKRRA	ERAEQQRIRNE	REKERQNRLAE	ERARREEEEN	170
mcTnT	LIEAH	IFENRK	KEEEE	LISI	KDRIEKRRA	ERAEQQRIRNE	REKERQNRLAE	ERARREEEEN	166
mcTnT F	LIEAR	IFENRK	KEEEE	LISL	KDRIEKRRAI	ERAEQQRIRNE	REKERQNRLAE	ERARREEEN	166
mcTnT ^A	LIEAH	IFENRK	KEEEE	LISL	KDRIEKRRA	ERAEQQRIRNE	REKERQNRLAE	ERARREEEN	180
mcTnT_c	LIEAR	IFENRK	KEEEE	LISL	KDRIEKRRA	ERAEQQRIRNE	REKERQNRLAE	ERARREEEEN	176
mcTnT B	LIEAR	IFENRK	KEEEE	LISL	KDRIEKRRA	ERAEQQRIRNE	REKERQNRLAE	ERARREEEEN	176
							-		
			12		13		14		
mcTnT_D	RRKAR	DEARK	KKALSI	NMMH	FGGYIQKQA	QTERKSGKRQT	EREKKKKILAE	RRKALAIDHL	230
mcTnT	RRKAR	DEARK	KKALS	NMMH	FGGYIQKQA	QTERKSGKRQT	EREKKKKILAE	RRKALAIDHL	226
mcTnT F	RRKAR	DEARK	KKALSI	NMMH	FGGYIQK	TERKSGKRQT	EREKKKKILAE	RRKALAIDHL	223
mcTnT ^A	RRKAR	DEARK	KKALSI	NMMH	FGGYIQK	TERKSGKRQT	EREKKKKILAE	RRKALAIDHL	237
mcTnT_c	RRKAR	DEARK	KKALSI	NMMH	FGGYIQK	TERKSGKRQT	EREKKKKILAE	RRKALAIDHL	233
mcTnT B	RRKAR	DEARK	KKALSI	NMMH	FGGYIQKQA	TERKSGKRQT	EREKKKKILAE	RRKALAIDHL	236
-									
	14				15		16	17	
mcTnT_D	NEDQI	REKAK	ELWQS	IHNI	EAEKFDLQE	KFKQQKYEINV	LRNRINDNQKV	SKTRGKAKVT	290
mcTnT	NEDQI	REKAK	ELWQS	IHNL	EAEKFDLQE	KFKQQKYEINV	LRNRINDNQKV	SKTRGKAKVT	286
mcTnT F	NEDQI	REKAK	ELWOS	IHNL	EAEKFDLQE	KFKQQKYEINV	LRNRINDNQKV	SKTRGKAKVT	283
mcTnT A	NEDQI	REKAK	ELWOS	IHNI	EAEKFDLOE	KFKQQKYEINV	LRNRINDNOKV	SKTRGKAKVT	297
mcTnT_c	NEDOI	REKAK	ELWOS	IHNI	EAEKFDLOE	KFKOOKYEINV	LRNRINDNOKV	SKTRGKAKVT	293
mcTnT B	NEDOI	REKAK	ELWOS	IHNI	EAEKFDLOE	KFKOOKYEINV	LRNRINDNOKV	SKTRGKAKVT	296
					£		z		
	17								
mcTnT_D	GRWK	294							
mcTnT	GRWK	290							
mcTnT F	GRWK	287							
mcTnT A	GRWK	301							
mcTnT c	GRWK	297							
mcTnT B	GRWK	300							

Figure S2. Sequence alignment of multiple mouse cTnT isoforms. Sequences were retrieved from NCBI database. The mcTnT isoforms D, E, F, A, C, and B were denoted as mcTnT_D, mcTnT_F, mcTnT_A, mcTnT_C and mcTnT_B respectively. Isoforms D, E, and F also correspond to P50752-4 (isoform A1), P50752-3 (isoform A2), and P50752-2 (isoform A3B) of mouse cTnT in UniProtKB/Swiss-Prot database. Exon numbers and boundaries are indicated. Shaded areas indicate the conserved sequence regions.

Figure S3. Representative MS/MS spectra of phosphorylated mcTnT for determination of phosphorylation site in mouse heart samples. (A) ECD spectrum of mouse $_p$ cTnT; No neutral loss of phosphate moiety is detected. (B) CAD spectrum of mouse $_p$ cTnT. Subscript p stands for product ions carrying phosphorylation. Neutral loss of phosphate moiety is evident. - 98 indicates the loss of H₃PO₄ (-98 Da). Note that the masses of \boldsymbol{b} ions (e.g. \boldsymbol{b}_6) equal to those with the loss of HPO₃ (-80 Da) from their phosphorylated counterparts (e.g. $_p\boldsymbol{b}_6$).

Figure S4. Representative ECD spectra of $_p$ hcTnT for determination of phosphorylation site in cTnT purified from normal human heart samples. No neutral loss of phosphate moiety is detected.

Figure S5. Representative CAD spectra of $_p$ hcTnT for determination of phosphorylation site in cTnT purified from normal human heart samples. Neutral loss of phosphate moiety is evident. -98 indicates the loss of H₃PO₄ (-98 Da). Note that the masses of *b* ions (e.g. *b*₆) equal to those with the loss of HPO₃ (-80 Da) from their phosphorylated counterparts (e.g. $_pb_6$).