
Supplemental Information

TUTORIAL ON SCREENING AND
ADVANCED METHODS

This material is designed for readers
who are seeking supplemental informa-
tion about the screening trade-offs
presented in Rodday et al. Part 1 pro-
vides definitions of screening terminol-
ogy and statistics used throughout the
article; we have also provided the
equations for calculating each of these
statistics. Part 2 uses figures and
examples to illustrate the trade-offs
between sensitivity and specificity for
any screening test. Part 3 demonstrates
the effect of sensitivity, specificity, and
prevalence on the number of true-
positives, false-positives, PPV, and NPV.
Part 4 describes in detail our methodol-
ogy with respect to the HSROC used in
Rodday et al. The use of HSROC was
necessary because most studies in the
meta-analysis reported sensitivity and
specificity for multiple positivity thresh-
olds. Finally, Part 5 discusses how we
back-calculatedtheprevalenceasdefined
byanon-ECGreferencestandard for LQTS.

PART 1: SCREENING DEFINITIONS

Screening tools in general can be de-
scribed by different statistics that,
taken together, permit appraisal of
their utility in identifying certain dis-
orders or diseases and can inform
decision-making at the policy level.52

For example, understanding the num-
ber of false-positives when detecting 1
case allows for a better understanding
of the downstream implications for
screening programs. We define com-
monly used screening test statistics
below and in Supplemental Table 4.

Sensitivity 5 true-positive rate 5
probability of having a positive test

among patients with disease 5
p(T1|D1) 5 TP/(TP 1 FN)
Specificity 5 true-negative rate 5
probability of having a negative test
among patients without disease 5
p(T2|D2) 5 TN/(TN 1 FP)
False-positive rate 5 probability
of having a positive test among
patients without disease 5 1 –

specificity 5 FP/(FP1TN)
False-negative rate 5 probability
of having a negative test among
patients with disease 5 1 –

sensitivity 5 FN/(FN1TP)
Positive predictive value (PPV) 5
probability of having disease among
patients with a positive test 5 p
(D1|T1) 5 (sensitivity*preva-
lence)/[(sensitivity*prevalence)1(1-
specificity)*(12 prevalence)]
Negative predictive value (NPV) 5
probability of not having disease
among patients with a negative test5
p(D2|T2) 5 [specificity*(1-prev-
alence)]/[specificity*(1-prevalence)1
(1-sensitivity)*prevalence]
False-alarm rate 5 probability of
not having disease in patients with
a positive test 5 p(D2|T1) 5 1 –

PPV
False-reassurance rate 5 proba-
bility of having disease in patients
with a negative test 5 p(D1|T2) 5
1 – NPV
Number needed to screen to de-
tect 1 case 5 1/(sensitivity*preva-
lence)
Number of false-positives when
detecting 1 case 5 (12 preva-
lence)*(12 specificity)/ (sensitivity*2
prevalence)
Number of false-negatives per
100 000 screened 5 100 000*prev-
alence*(12 sensitivity)

PART 2: TRADE-OFFS BETWEEN
SENSITIVITY AND SPECIFICITY

With any screening program, there are
trade-offs between sensitivity and spec-
ificity as demonstrated by receiver op-
erating characteristic (ROC) curves
(Supplemental Fig 4), which plot sensi-
tivity on the y-axis as a function of 1
minus specificity on the x-axis. In the
absence of a perfect test, increases in
sensitivity will result in decreases in
specificity, and vice versa. For example,
at point A in Supplemental Fig 4, sensi-
tivity is 0.4 and specificity is 0.99 (la-
beled as 1-0.01 in Supplemental Fig 4),
but when sensitivity increases to 0.95
at point B, the specificity falls to 0.80
(1-0.2).

In general, when sensitivity increases,
the number of true-positives increases,
but this comes at the cost ofmore false-
positives. Alternatively, when specificity
increases, thenumberof true-negatives
increases, but this, in turn, leads to
more false-negatives. Supplemental
Tables 5 and 6 demonstrate how true-
positives, false-positives, false-negatives,
and true-negatives change when sensi-
tivity and specificity change for a theo-
retical sample of 100. Two illustrative
points on a hypothetical ROC curve are
used: (1) sensitivity5 90%, specificity5
56%and (2) sensitivity5 40%, specificity
5 89%.

When designing a screening test, con-
sideration must be given as to whether
sensitivity, specificity, or both will be
prioritized. This decision affects the
numberof true-positives, false-positives,
true-negatives, and false-negatives.
Different screening programs require
different sensitivity and specificity
trade-offs. For example, when screening
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for HIV in blood banks—a situation
where one does not want to risk con-
taminating the blood supply—one
would want to minimize false-
negatives, which corresponds to
selecting a high sensitivity and
accepting a lower specificity. As a con-
sequence, there would likely be many
false-positives. The counterexample is
former President Reagan’s proposal to
screen couples applying for marriage
licenses for HIV. The prevalence of HIV
in this population is known to be low,
and false-positive results would re-
sult in stigmatization and perhaps the
ending of the relationship. In this
case, false-positives would want to be
avoided, so specificity should be fa-
vored over sensitivity.51

PART 3: THE ROLE OF PREVALENCE
IN SCREENING

Prevalence estimates can further
complicate the trade-off between sen-
sitivity and specificity. In general,
screening programs are most effective
if preclinical prevalence is sufficiently
high in the screened population.11

There are instances, however, where
screening is recommended for con-
ditions with low prevalence, such as
SCD.

The following figures and explanations
focus on screening in the case of low
prevalence conditions (0%–5%). We
focus on the case where the sum of
sensitivity and specificity is maxi-
mized (“maximal accuracy”) and the
case where specificity is maximized
(“maximal specificity”). A point on the
curve where sensitivity was maxi-
mized was not selected because the
corresponding specificity was very
low.

Supplemental Fig 5 demonstrates the
number of true-positives and false-
positives per 100 000 screened when
sensitivity and specificity are both set
as equal to 90% and prevalence ranges
from 0% to 5%. As can be seen, as

prevalence increases to 5%, the number
of true-positives increases, but the false-
positives remain high. Supplemental
Fig 5 also provides a graphical dis-
play of the phenotypical prevalence
estimates of SCD among children
from Rodday et al. (point A) com-
pared with often-cited prevalence
estimates of SCD in the literature
(point B).13,19,20

Supplemental Fig 6 next examines the
impact on the PPV and NPV when sen-
sitivity and specificity are both equal to
90% and prevalence ranges from 0% to
5%. Negative predictive value remains

high and relatively stable as prevalence
increases. This indicates that most of
the people who test negative will not
have the disorder. Contrastingly, PPV in-
creases slightly as prevalence increases,
but stays below 30%, which indicates
that many of those who test positive will
not actually have the disorder.

Next, we examine the situation in which
specificity is maximized. Supplemen-
tal Fig 7 demonstrates the number of
true-positives and false-positives per
100 000 screenedwhen sensitivity is 50%
and specificity is 99% and prevalence
ranges from 0% to 5%. As compared

SUPPLEMENTAL FIGURE 4
Trade-offs between sensitivity and specificity.

SUPPLEMENTAL FIGURE 5
Role of prevalence in number of true-positives (TP) and false-positives (FP) per 100 000 screened, where
sensitivity5 90% and specificity5 90%. A5 188 per 100 000; prevalence estimate from Rodday et al. B
5 450 per 100 000; prevalence estimate from often-cited references.13,19,20
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with Supplemental Fig 5, where sensi-
tivity and specificity were both 90%, the
false-positive rate per 100 000 is much
lower and the true-positive rate increa-
ses at a slower rate.

Supplemental Fig 8 demonstrates the
PPV and NPV when sensitivity is 50%
and specificity is 99% and prevalence
ranges from 0% to 5%. Compared with
Supplemental Fig 6, where sensitivity
and specificity were both maximized at
90%, the PPV increasesmore quickly as
prevalence increases, which indicates

that among those who test positive,
more will actually have the disease.
Negative predictive value continues to
remain high in this situation.

Two prevalence estimates are included
on each figure: point A represents the
phenotypic prevalence estimate from
Rodday et al (188 per 100 000) and point
B represents often-cited prevalence
estimates for these disorders (450 per
100 000).13,19,20 Although there is debate
about which of these numbers repre-
sents a more accurate prevalence

estimate of the disorders that cause
SCD in children, we can see that from a
policy perspective that the differences
in the number of true-positives, false-
positives, PPV, and NPV between these 2
estimates are not very large.

Together, these figures and examples
demonstrate an important concept
when considering screening programs
for lowprevalencedisorders: increasing
specificityhelps todecrease thenumber
of false-positives and increase the PPV,
while having little effect on the NPV.

PART 4: APPLICATION OF
HIERARCHICAL SUMMARY
RECEIVER OPERATING
CHARACTERISTIC IN RODDAY ET AL

Sensitivity and specificity are corre-
lated across studies that use different
thresholds for test positivity. When the
one increases, we expect the other to
decrease(ie, thecorrelation isnegative).
In such cases, the most appropriate
summary of diagnostic performance is
a Summary ROC curve (SROC). An SROC
curve resembles the ROC curve of indi-
vidual studies, and describes the trade-
off between average sensitivity and
average specificity across the examined
studies.

The Dukic and Gatsonis method that we
used in our analysis was based on the
Rutter and Gatsonis description of a
hierarchical SROC (HSROC) model, es-
sentially, a hierarchical (2-level) logistic
regression. The first level (study level)
models within-study variability. The
second level models between-study
variability and describes the relation-
ship between the average sensitivity
and specificity in terms of positivity
threshold andaccuracyparameters (ie,
parameters that describe the shape of
thecurve). The resultingregression line
is a hierarchical SROC, or HSROC line.16,17

The Rutter-Gatsonis model was de-
veloped for studies that report results
at a single threshold (ie, a single 23 2
table), however. In our case, most

SUPPLEMENTAL FIGURE 6
Role of prevalence in PPV and NPV, where sensitivity5 90% and specificity5 90%. A5 188 per 100
000; prevalence estimate from Rodday et al. B5 450 per 100 000; prevalence estimate from often-
cited references.13,19,20

SUPPLEMENTAL FIGURE 7
Role of prevalence in number of true-positives (TP) and false-positives (FP) per 100 000 screened, where
sensitivity5 50% and specificity5 99%. A5 188 per 100 000; prevalence estimate from Rodday et al. B
5 450 per 100 000; prevalence estimate from often-cited references.13,19,20
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studies reported sensitivity and speci-
ficity for multiple positivity thresholds
(ie, there were multiple 2 3 2 tables
with 1 per positivity criterion thresh-
old). Therefore, the sensitivity and
specificity pairs corresponding to dif-
ferent thresholds in the same study
were not independent. To account for
the complexity of data reported at mul-
tiple thresholds, we used an extension

of the typical HSROCmodel, as described
by Dukic and Gatsonis.18 The key differ-
ence with the previous model is that it
uses an ordinal hierarchical logistic re-
gression approach (whereas logistic
regressions handle 2 categories, ordinal
logistic regressions handle multiple and
ordered categories). We specified the
model for multiple thresholds in the
Bayesian framework, and fit it by using

Gibbs sampling with Markov Chain
Monte Carlo in OpenBugs 3.03 via R and
the BRugs library. The model code is
available from the authors on request.

PART 5: BACK-CALCULATING THE
PREVALENCE AS DEFINED BY
A NON-ECG REFERENCE STANDARD

We can estimate the general population
prevalenceof LQTSasdefinedbygenetic
testing from the proportion of screen-
ing ECGs that are suggestive of LQTS,
provided that we have some knowledge
of the sensitivity and specificity of ECG
testing. The idea is straightforward:
the sensitivity of ECG can provide in-
formation on the number of true-
positive ECGs, and the specificity of
ECG can provide information on the
number of false-positive ECGs. The sum
of true- and false-positive is the total
number of positive screening ECGs. One
can thus set up a system of equations
and solve for the unobserved (latent,
unknown) prevalence of LQTS as de-
fined by genetic testing. To properly
account for the uncertainty in our
knowledge of the sensitivity and spec-
ificity of ECG, we should not treat them
as fixed numbers, but as distributions.
This intuitive description can be for-
malized as a calculation that combines
the data (number of positive ECGs in
various studies) and knowledge exter-
nal to thedata (“prior” knowledge, such
as the distribution of the sensitivity and
specificity of ECG and a “prior” [best
guess] on the distribution of the un-
known prevalence of LQTS as defined by
genetic testing) to obtain a “posterior”
distribution on the prevalence of LQTS
as defined by genetic testing based on
Bayes theorem.

Priors

We used normal priors on the logit-
transformed sensitivity and specificity
of ECG. We obtained the SDs of the logit
transformed sensitivity and specificity of
ECG from the results of univariate meta-

SUPPLEMENTAL FIGURE 8
Role of prevalence in PPV and NPV, where sensitivity5 50% and specificity5 99%. A5 188 per 100 000;
prevalence estimate from Rodday et al. B 5 450 per 100 000; prevalence estimate from often-cited
references.13,19,20

SUPPLEMENTAL TABLE 1 Screening Characteristics

Disease (D)

Present Absent

Test Result (T) Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

SUPPLEMENTAL TABLE 2 Higher Sensitivity (90%), Lower Specificity (56%)

Disease (D)

Present Absent Total

Test Result (T) Positive TP59 FP540 49
Negative FN51 TN550 51
Total 10 90 100

FN, false-negative; FP, false-positive; TN, true-negative; TP, true-positive.

SUPPLEMENTAL TABLE 3 Higher Specificity (89%), Lower Sensitivity (40%)

Disease (D)

Present Absent Total

TestResult (T) Positive TP54 FP510 14
Negative FN56 TN580 86
Total 10 90 100

FN, false-negative; FP, false-positive; TN, true-negative; TP, true-positive.
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analysesof sensitivity andspecificity. The
means of the logit-transformed sensi-
tivity and specificitywere selected based
on theHSROCcurves.Weassumed that in
a screeningsetting, onewould select ECG
criteria that would have a specificity of
95%; we selected the sensitivity that
corresponded to this value from the
meta-analytic HSROC curve (82%).

We explored 3 different priors for the
latent prevalence of LQTS by genetic
testing: the first was a noninformative
prior (a very vague prior that assigns
almost equal probability to all possible
prevalence values). The other 2 priors
were informative and were based on
a study of genetic testing for LQTS in
newborns by Schwartz et al.13 Both in-
formative priors assumed that the mean
prevalence of LQTS by genetic testing in
children and young adults was the same
as that in the above-mentioned study in
newborns (1 in 2534 children or young
adults),13 but differed in the precision
withwhich this unobservedprevalence is
known. The second choice for a prior
distribution assumed that the prevalence
is known with the precision conferred
by a study of ∼2534 children or young
adults; and the third choice assumed that
the prevalence is known with the pre-
cision conferred by a study of ∼43 c080
sample size (equal to the sample size of
the Schwartz et al study of newborns13).

Model

We made an extension of the model
by Josephet al22 tomore than1 study. The
code is available from the authors on
request. A summary of themodel follows.

Xi∼Binomialðpi; niÞ;

where Xi is the number of positive ECG find-
ings in a given study, pi is the probability of
a positive ECG in a given study, and ni is the
size of the study. pi is calculated as follows:

pi 5 sensitivity of ECG�prevalencei
1 ð12 specificity of ECGÞ�
3ð12 prevalenceiÞ;

where

logitðsensitivity of ECGÞ∼Normal
ðlogit½sensitivity of ECG from

meta-analysis�;
varianceðlogit½sensitivity of ECG from

meta-analysis�ÞÞ
logitðspecificity of ECGÞ∼Normal

ðlogit½specificity of ECG from

meta-analysis�;
varianceðlogit½sensitivity of ECG from

meta-analysis�ÞÞ
logitðprevalenceiÞ∼Normal
ðlogitðprevalenceÞ; t2Þ

and

t∼uniformð0; 2Þ

For thedistributionof logitðprevalenceÞ,
we used different parameters depend-
ing on whether we wanted a non-
informative prior or a prior based on
Schwartz et al.13

Noninformative prior:

logitðprevalenceÞ∼Normalð0; 0:01Þ

Prior from full Schwartz et al13 data:

logitðprevalenceÞ∼Normalðlogit
½17=43 080�; logit½1=171 1=
ð43 0802 17Þ�Þ

Prior based on prevalence from
Schwartz et al13 data:

logitðprevalenceÞ∼Normalðlogit
½1=2534�; logit½1=11 1=
ð25342 1Þ�Þ
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