Supplementary material for Marvin and Hellinga (2001) *Proc. Natl. Acad. Sci. USA* **98** (9), 4955–4960. (10.1073/pnas.091083898)

Site	Residue	χ1	χ2	κ	N–Zn bond
					length
A1	H63 _{II}	47.3	-84.1	-178.1	2.883
	H66 _{II}	-66.8	-94.3	172.2	2.155
	H340 _I	-58.6	-135.7	-34.8	2.671
A2	H63 _{II}	51.4	-87.3	-179.2	2.030
	H66 _{II}	-58.9	-97.5	166.5	2.373
	H155 _I	-60.6	85.7	174.5	2.508
B1	H42 _{II}	-172.2	-98.7	160.1	2.392
	$H44_{II}$	65.5	-93.2	168.1	2.272
	H341 _I	-61.3	94.3	-167.7	2.776
B2	$H48_{II}$	-61.9	-70.2	-153.8	2.003
	H69 _{II}	167.5	-106.1	-12.6	2.234
	H338 _I	-75.1	-77.9	-163.9	2.223

Table 5. Detailed descriptions of the designs: Dihedrals and lengths

All sites are designed to coordinate Zn through the histidine N_{ϵ} , except for A1: H340_I and B1: H69_{II}, which coordinate through N_{δ} . χ angles reported in degrees. N–Zn bond length reported in Å. χ 1 defined as dihedral of N-C $_{\alpha}$ -C $_{\beta}$ -C $_{\gamma}$. χ 2 defined as dihedral of C $_{\alpha}$ -C $_{\beta}$ -C $_{\gamma}$ -C $_{\delta}$. κ defined as dihedral of C $_{\gamma}$ -C $_{\delta}$ -N $_{\epsilon}$ -Zn (C $_{\beta}$ -C $_{\gamma}$ -N $_{\delta}$ -Zn for A1: H340_I and B1: H69_{II}). All dihedrals are within 30° of the observed rotamers for histidine [Lovell, S.C., Word, M. J., Richardson, J. S. & Richardson, D. C. (2000) *Proteins* **40**, 389-408]. Subscripts I and II refer to the domain in which the residue is located (see Fig. 1).