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Figure S1. Pharmaceutical targets that could be partially synthesized by enzyme-
catalyzed aldol condensations. The portions of each molecule that can be synthesized 
using a pyruvate aldolase followed by a minimal number of steps are shown with boxes. 
The pyruvate equivalences are highlighted in red: (A) the 3-hydroxylipoic amides of 
syringomycin E1 and other lipodepsipeptide; (B) the dimethyl -hydroxylactone of 
lyngbyabellin2; and (C) the 2-amino-(4-aryl)-4-hydroxybutyrate chain of nikkomycins. 
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Figure S2. Model of KDPGal bound to E. coli KDPG aldolase. The galacto- 
configuration is disfavored because the C4 hydroxyl makes unfavorable van der Waals 
contacts with R49 and V20 (shown as dashed red lines). Furthermore, W1 is poorly 
situated to facilitate proton transfer (3.8 Å and a proton abstraction angle of 76°). 
 
 

 
Figure S3. Stereoselectivity in E. coli KDPGal aldolase. (A) Structure of galacto-sugar 
bound to KDPGal aldolase.11 Unlike KDPG aldolase, KDPGal aldolase does not have a 
W2 binding pocket. Consequently, W1 and Glu37 are positioned deeper in the active site 
and closer to R14. Only in the galacto-configuration where O4 points towards R14 can 
this oxygen reach W1 to accomplish proton transfer (distance 2.7 Å and proton 
abstraction angle of 114°). (B) Model of gluco-sugar bound to KDPGal aldolase. The 
gluco-configuration is disfavored because the distance and geometry of the O4 water W1 
interaction are poor (3.5 Å and 80° angle of proton abstraction). Also the lower pocket 
occupied by the O4 of the gluco-sugar is destabilized by steric clashes with V154 (shown 
as dashed red lines) and the pocket is entirely hydrophobic. 
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Table S1. Some important aldolases for synthetic applications. 
 Donor nucleophile Names of 

aldolases 
Products References 

 
1 

 
Dihydroxyacetone 
phosphate/ 
Dihydroxyacetone 
 
 
 
 
 
 

 

 
 

FBP 
FSAa 

 
TBP 

 
 

RhuA 
 
 

FucA 
 
 

  
 

Choi 20013 
Schurmann 20014 
 
Hall 20025 & 
Lowkam 20106 
 
Kroemer 20037 
 
 
Joerger 20008 
 
 
 

 
2 

 
Pyruvate / 
Phosphoenol-
pyruvate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

KDG  
 
 

KDPG 
 
 

KDPGal 
 
 

NeuAc 
 
 

BphI 
 
 

HpaI 
 

 
KDO8 

 
 

 
 

+ 
 
 

(a) 
 
 

(b) 
 
 

(a) 
 
 

(b) 
 
 

(b) 
 

 
(b) 

 
 

 
 
Theodossis 20049 
 
 
Allard 200110 
 
 
Walters 200811 
 
 
Izard 199412 
 
 
Baker 201113 
 
 
Wang 200514 
 
 
Radaev 200015 
 
 

 
3 

 
Acetaldehyde 
 
 
 

 
 

DERA 

  
 
Hiene 200416 

(a) (b) 



 
4 

 
Glycine 
 
 
 

 
 

TA 

  
 
Kielkopf 200217 

a FSA uses dihydroxyacetone as its nucleophilic substrate. 
FBP, fructose-1,6-bisphosphate aldolase; FSA, fructose-6-phosphate aldolase; TBP, tagatose-1,6-
bisphosphate aldolase; RhuA, rhamnulose-1-phosphate aldolase; FucA, fuculose-1-phosphate 
aldolase; KDG, 2-keto-3-deoxygluconate aldolase; KDPG, 2-keto-3-deoxy-6-phosphogluconate 
aldolase; KDPGal, 2-keto-3-deoxy-phosphogalactonate aldolase; KDO8, 3-deoxy-D-manno-
octulosonate 8-phosphate synthase; NeuAc, N-acetylneuraminic acid lyase or D-sialic acid aldolase; 
DERA, 2-deoxyribose-5-phosphate aldolase; TA, L-threonine acetaldehyde-lyase; BphI is a catabolic 
aldolase part of the polychlorinated biphenyls degradation pathway; HpaI is a catabolic aldolase in 
the hydroxyphenylacetate pathway  
 
 
 
 
Table S2 

         T161  G162        S184 
    KHO KHPB       KHO   KHPB KHO   KHPB 

Number of plasmids transformed       160       120             >200    >200         >200    >200 
Number of colonies grown              2            3                  3             0            3          0 
Number of unique sequences               2            1                  2            -             1          -   
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