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Supplemental Figure 1. Construct used for the suppression of VIPP1
by RNAi. A piece of VIPP1 genomic DNA in sense orientation was fused
to a VIPP1 cDNA fragment in antisense orientation. Exons are drawn as
black boxes, introns and non‐coding sequences as grey lines.
Constitutive expression was driven by a fusion of promoters HSP70A
and RBCS2 (AR) shown as white box. The ARG7 gene (grey box) was
located on the same plasmid as selectable marker. Introns in the ARG7
gene are not shown.
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Supplemental Figure 2. Major thylakoid membrane protein
complexes are fully assembled in VIPP1‐RNAi strains. A control
strain and VIPP1‐RNAi strains #20 and #32 grown in TAP‐NH4

medium were separated into soluble and membrane fractions bymedium were separated into soluble and membrane fractions by
freeze‐thawing cycles. Proteins in membrane fractions were
solubilized in β‐dodecyl‐maltoside, separated on a 3‐14% blue‐
native polyacrylamide gradient gel and stained with Colloidal
Coomassie blue.
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Supplemental Figure 3. Bulk membrane lipid composition in VIPP1‐RNAi
strains is indistinguishable from that of control strains. Whole cell lipids from
three biological replicates of a control strain and from VIPP1‐RNAi strains #127three biological replicates of a control strain and from VIPP1 RNAi strains #127,
#129, and #130 were extracted, separated by thin layer chromatography and
visualized with iodine vapor. Monogalactosyl‐diacylglycerol (MGDG),
phosphatidylglycerol (PG) and digalactosyl‐diacylglycerol (DGDG) were identified
based on their comigration with the respective purchased lipids.
Phosphatidylcholin (PC) and phosphatidylethanolamine (PE) were assigned
according to migrations reported by Gaude et al. (2004).

3



h t 1000 E 2 1

Supplemental Data. Nordhues et al. (2012). Plant Cell 10.1105/tpc.111.092692

100 50 5

% Con
#3 #18 #93

4 0

100 50 5

% Con
#3 #18 #93

h at 1000 µE m‐2s‐1

100 50 5

% Con
#3 #18 #93

10 

αHSP70B

αVIPP1

αCF1β (ATPase)

RNAiRNAi RNAi

β
αPsaD (PSI)

αCP43 (PSII)

αCyt f (b6f)

Supplemental Figure 4. Subunits of PSII and PSI are rapidly degraded in VIPP1‐
RNAi strains exposed to high light intensities. A control strain and VIPP1‐RNAi
strains #3 #18 and #93 were grown in TAP NH medium and exposed to a lightstrains #3, #18, and #93 were grown in TAP‐NH4 medium and exposed to a light
intensity of ~1000 µE m‐2 s‐1 for 10 h. 53.5 µg whole‐cell proteins from each sample
were separated on a 7.5‐15% SDS‐polyacrylamide gel and analyzed by
immunoblotting.
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Supplemental Figure 5. High‐light sensitivity is also observed in
VIPP1‐amiRNA strains unable to induce VIPP2 expression.
(A) Schematic drawing of the amiRNA construct used and its
target region in the VIPP1 transcript. pMS552 is based on
pChlamiRNA2 (Molnar et al., 2009), which is driven by the
constitutively active HSP70A‐RBCS2 tandem promoter. The amiRNAy p
generated by pMS552 targets the VIPP1 coding region. Base‐pairing
nucleotides of the amiRNA and VIPP1 mRNA are shaded in grey.
(B) High‐light sensitivity of VIPP1‐amiRNA strains. A control strain
and VIPP1‐amiRNA strain #14 grown in TAP‐NH4 medium were
exposed to a light intensity of ~1000 µE m‐2 s‐1 for 24 h.
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Supplemental Figure 6 VIPP1‐RNAi strains are not impaired in state transitionsSupplemental Figure 6. VIPP1 RNAi strains are not impaired in state transitions.
(A) PAM fluorescence traces. Control and VIPP1‐RNAi strains #14 and #39 were
grown in TAP‐NH4 medium at ~30 µE m‐2 s‐1. After 10 min exposure to far red light
(FR) to establish state 1, FR was switched off to establish state 2. After 10 min, FR
was switched on again. The PAM traces were normalized to the initial FM.
(B) 77 K fluorescence emission spectra. Samples were taken from cultures
illuminated with far red light for 10 min in the presence of 10 µM DCMU (state 1),
or bubbled with nitrogen for 10 min in the dark (state 2) and immediately frozen in
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liquid nitrogen. Spectra were recorded with excitation at 430 nm and normalized at
687 nm.
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Supplemental Figure 7. Delayed bleaching of VIPP1‐RNAi
strains grown on nitrate. A control strain and VIPP1‐RNAi
strain #4 were grown in TAP‐NO3 medium and exposed to a
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light intensity of ~1000 µE m‐2 s‐1 for 35 h. Pictures of high‐
light exposed strain #4 grown in TAP‐NH4 from Figure 1C
are shown for comparison.
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Supplemental Figure 8. Categories of thylakoid structure.
Shown are electron microscopy images from cells of control and VIPP1‐RNAi/amiRNA strains that
represent typical examples for the three categories of ‘ordered’, ‘disordered’ and ‘swollen’
thylakoids. Scale bars in overview images correspond to 1 µm, those in zoom‐ins to 0.2 µm.
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Supplemental Figure 9. Lysis of high light‐exposed VIPP1‐RNAi cells grown on nitrate appears not
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to be caused by thylakoid swelling.
(A) Electron microscopy image of a cell from VIPP1‐RNAi strain #27. Cells were grown in TAP‐NO3

medium and exposed to ~1000 µE m‐2 s‐1 for 7 h. Shown is a typical image of a lysed cell. Lysis was
observed for 36 out of 100 randomly photographed cells.
(B) Electron microscopy image of a cell from the control strain. Cells were treated as in (A). Shown
is a typical image of an intact cell. 98‐99 of 100 randomly photographed control cells were intact.
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Supplemental Figure 10. VIPP1‐RNAi strains are less sensitive to photoinhibition when grown on
nitrate as compared to ammonium.
(A) Subunits mainly of PSII but also of PSI are degraded in VIPP1‐RNAi strains after photoinhibition(A) Subunits mainly of PSII but also of PSI are degraded in VIPP1‐RNAi strains after photoinhibition.
Control and VIPP1‐RNAi strain #27 were grown in TAP‐NH4 medium. Cells were exposed to ~1800 µE m‐2

s‐1 for 60 min (HL) and shifted back to ~30 µE m‐2 s‐1 for 120 min (LL). Whole‐cell proteins were separated
on 14% SDS‐polyacrylamide gels and analyzed by immunoblotting.
(B) Subunits of PSII and PSI are less prone to degradation in photoinhibited VIPP1‐RNAi strains grown
on nitrate. The experiment was done as described in (A), but cells were grown in TAP‐NO3 medium.
(C) RNA gel blot analysis of photoinhibited control and VIPP1‐RNAi strains. Control and VIPP1‐RNAi
strain #27 were grown in TAP‐NO3 or TAP‐NH4 medium Cells were exposed to ~1800 µE m‐2 s‐1 for 60 min
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strain #27 were grown in TAP NO3 or TAP NH4 medium. Cells were exposed to 1800 µE m s for 60 min
and shifted back to ~30 µE m‐2 s‐1 for 300 min for recovery. RNA was extracted from samples taken at the
indicated time points and subjected to RNA gel blot analysis. CBLP2 served as loading control.
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Supplemental Figure 11. VIPP1‐RNAi strains are less sensitive to heat
shock when grown on nitrate as compared to ammonium.
(A) Subunits of thylakoid membrane complexes are not affected by
heat stress in VIPP1‐RNAi strains grown on nitrate. Control and
VIPP1‐RNAi strain #27 were grown in TAP‐NO3 medium. Cells were
exposed to 40°C and whole‐cell proteins were extracted at the
indicated time points. Whole‐cell proteins were separated on 14%
SDS‐polyacrylamide gels and analyzed by immunoblotting.
(B) RNA gel blot analysis of heat‐stressed control and VIPP1‐RNAi
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strains. Control and VIPP1‐RNAi strains #27 and #41 were grown in
TAP‐NO3 medium. Cells were exposed to heat shock at 40°C for 180
min and shifted back to 25°C for 90 min. RNA was extracted from
samples taken at the indicated time points and subjected to RNA gel
blot analysis. CBLP2 served as loading control.



SUPPLEMENTAL METHODS

Lipid extraction, separation and visualization
VIPP1‐RNAi strains #127, #129, and #130 and three biological replicates of a control strain were
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grown at ~30 µE m‐2 s‐1 in TAP‐NH4 medium to a density of ~3 x 106 cells/ml. 14 ml of each culture
were harvested by centrifugation at 3500 g, washed with phosphate buffered saline and the pellet
was frozen in liquid N2 and stored at ‐80°C. Pellets were resuspended in 600 µl
methanol/chloroform/formic acid (1:1:0.1) and 200 µl 0.1 M KCl, 0.2 M H3PO4 were added.
Samples were homogenized by vortexing, phases were separated by centrifugation and the
organic phase was transferred to a glass vial. The remaining aqueous phase was extracted again
with 400 µl chloroform/methanol (2:1), organic phases were combined and dried in a constant
stream of nitrogen. Lipids were resuspended in chloroform/methanol (2:1) to a concentration of 1g p p / ( )
µg/µl chlorophyll. Separation of lipids was done according to (Benning and Somerville, 1992) on
(NH4)2SO4 treated TLC silica plates (Baker Si250PA) using acetone/toluene/water (91:30:8) as
mobile phase. Lipids were visualized with iodine vapor. The standard for phosphatidylglycerol was
purchased from Sigma, those for mono‐ and digalactosyldiacylglycerol were a kind gift from Dr.
Sandra Witt, MPI‐MP, Potsdam‐Golm. Phosphatidylcholin (PC) and phosphatidylethanolamine (PE)
were assigned according to migrations reported previously (Gaude et al., 2004).

BN‐PAGEBN PAGE
Blue‐native PAGE was done according to published protocols (Schagger and von Jagow, 1991;
Schagger et al., 1994).

77 K fluorescence and PAM measurements
77 K fluorescence emission spectra were measured using a F‐6500 spectrofluorometer (Jasco). The
sample was excited at 430 nm wavelength with a 10 nm bandwidth, and emission spectra were
measured between 655 and 800 nm wavelength. To monitor state transitions by PAM,
measurements were done in a home made suspension cell with a FMS2 pulse amplitudemeasurements were done in a home‐made suspension cell with a FMS2 pulse amplitude
modulation fluorometer (Hansatech, Norfolk, UK) at 25° C, with alternating far‐red light
application as described previously (Lokstein et al., 1994). Saturating light pulses were given every
60 sec.
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