
Hobbes: Optimizing Gram-Based Methods for
Read Alignment

1 Supplementary Information

1.1 Pseudo-Code

In this section, we present pseudo-code for computing the optimal gram prefix (from
Section 2.2), using the bitvector filter (from Section 2.3) and for the overall read-
mapping procedure that utilizes the former two techniques for Hamming distance.

1.1.1 Optimal Prefix Grams

See Figure 1.

1.1.2 Read-Mapping Procedure

See Figure 2.

1.1.3 Bitvector Filtering Procedures

See Figures 3, and 4.

1.2 Multi-Threading

Figure 5 shows the mapping-time speed-up as we increased thenumber of threads used
by Hobbes, BWA, and Bowtie. Hobbes scales very well when asked to find 100 (a),
1000 (b), or all (c) mappings per read. BWA’s relative speed-up becomes worse as
the number of requested mappings per read increases. One explanation could be that
BWA only supports multiple threads in the second step of their mapping procedure.
Notice that Bowtie’s mapping time increases beyond 8 threads. We conjecture that
both BWA’s and Bowtie’s speed in this scenario is limited by the disk bandwidth for
writing the output file, because we observed disk thrashing at times. Since finding all
mappings is not their design point this behavior is acceptable. However, as the number
of cores in modern CPUs increase dramatically, disk usage may become a performance
bottleneck even when asking for only a few mappings per read.We have shown that
Hobbes utilizes multiple threads well, and still outperforms BWA and Bowtie.

1

Input:
Gram lengthq.
Inverted listsL corresponding to a reads’s q-gramsG(s).
Hamming-distance thresholdd.

Output:
A setP of d + 1 non-overlappingq-gram positions,
minimizing the sum of their inverted-list lengths.

Method: FindOptimalPrefix
1. r = d + 1 + 1; // rows
2. c = |L| − d ∗ q + 1; // columns
3. Create matrixM(r, c);
4. // initialize matrix
5. FOR i = 1 TO c
6. M(i, 0) = ∞;
7. END FOR
8. FOR j = 1 TO r
9. M(0, j) = 0;
10. END FOR
11. // perform dynamic programming
12. FOR i = 1 TO c
13. FOR j = 1 TO r
14. cmp = M(i − 1, j) + L[j + (i − 1) ∗ q].len;
15. IF cmp < M(i, j − 1) THEN
16. M(i, j) = cmp;
17. P [i] = j + (i − 1) ∗ q;
18. ELSE
19. M(i, j) = M(i, j − 1);
20. ENDIF
21. END FOR
22. END FOR
23. RETURN P ;

Figure 1: Dynamic programming algorithm for finding an optimal set of prefix grams
(Section 2.2).

1.3 Application in RNA-seq analysis

2

Input:
Gram lengthq.
Reads.
Inverted listsL corresponding to a reads’s q-gramsG(s).
Note: Inverted lists contain pairs(p, b) of position and bitvector.
Hamming-distance thresholdd.
Bitvector width in bitsw.

Output:
A setR of mapping positions within Hamming distanced of reads.

Method: FindMappings
1. bs = GetBitvector(s);
2. P = FindOptimalPrefix(q, L, d);
3. SortByListLength(P);
4. C = {}; // candidate mappings
5. FOR i = 1 TO |P |
6. b = AlignBitvector(bs, w, q, P [i]);
7. m = GetBitMask(|s|, w, q, P [i]);
8. Cnew = {}, k = 1, j = 1;
9. list = L[P [i]];
10. WHILE k ≤ |C| OR j ≤ |list| DO
11. IF k ≤ |C| OR (j ≤ |list| AND C[k] > list[j].p) THEN
12. IF Popcount(b XOR (list[j].b AND m)) ≤ d THEN
13. Cnew .add(list[j].p);
14. END IF
15. j + +;
16. ELSE IF j ≤ |list| OR (k ≤ |C| AND C[k] < list[j].p) THEN
17. Cnew .add(C[k]);
18. k + +;
19. ELSE
20. IF Popcount(b XOR (list[j].b AND m)) ≤ d THEN
21. Cnew .add(C[k]);
22. END IF
23. k + +;
24. j + +;
25. END IF
26. END WHILE
27. C = Cnew ;
28. END FOR
29. R = VerifyCandidates(C);
30. RETURN R;

Figure 2: Read-mapping procedure for finding all mappings within a Hamming-
distance threshold. The procedure uses the optimal prefix grams, and bitvector filtering.

3

Input:
Read bitvectorbs.
Bitvector width in bitsw.
Gram lengthq.
Position of matchingq-gramp.

Output:
A read’s aligned bitvector.

Method: AlignBitvector
1. ML = (p − 1) “1” bits followed by (|bs| − p + 1) “0” bits;
2. MR = (p − 1) “0” bits followed by (|bs| − p + 1) “1” bits;
3. L = (bs AND ML) >> (w/2 − (p − 1));
4. R = (bs AND MR) << (p + q − 1) − w/2));
5. b = L + R;
6. RETURN Firstw bits of b;

Figure 3: Procedure for aligning a read’s bitvector to the bits in the bitvectors of the
reference sequence, based on the position of a matchingq-gram in the read.

Input:
Read length|s|.
Bitvector width in bitsw.
Gram lengthq.
Position of matchingq-gramp.

Output:
Bitmask to remove invalid bits.

Method: GetBitMask
1. M = w “1” bits;
2. L = w/2 − (p − 1);
3. R = max(0, (p + q − 1) − w/2 − (|s| − w));
4. Set firstL bits ofM to “0”.
5. Set lastR bits ofM to “0”.
6. RETURN M ;

Figure 4: Procedure for computing a bitmask to remove invalid bits from bitvectors of
the reference sequence, based on the position of a matching q-gram in a read.

4

 0.1

 1

 10

 100

 1 2 4 8 16

M
ap

pi
ng

 T
im

e
(m

in
)

Number of threads

Hobbes
BWA

Bowtie*
Bowtie

(a) output at most 100 mappings per read

 0.1

 1

 10

 100

 1 2 4 8 16

M
ap

pi
ng

 T
im

e
(m

in
)

Number of threads

Hobbes
BWA

Bowtie*
Bowtie

(b) output at most mappings 1000 per read

 0.1

 1

 10

 100

 1 2 4 8 16

M
ap

pi
ng

 T
im

e
(m

in
)

Number of threads (k)

Hobbes
BWA

Bowtie*
Bowtie

(c) output all mappings per read

Figure 5: Mapping times of Bowtie, BWA and Hobbes using multiple threads on 51bp
read within 3 errors (Hamming distance). Notice the log-logscale. mrsFast, and Raz-
erS2 do not support multi-threading (we could not find it in their manual).

5

Figure 6: Scatter plot of fragments per kilobase per million(FPKM) value when
Hobbes returns at mostk mappings versus all mappings. In subfigure A, there is a
lot of variability when k=1; in subfigure B, the amount of variablity reduces when
k=10; in subfigure C, when k=100, the estimated FPKM value become more close to
that estimated based on all mapping locations.

6

