SUPPLEMENTARY INFORMATION

Same gel & blot

Supplementary Figure S1. RNA-EMSA using ³²P-labeled RNA aptamers and purified human RIG-I protein. The number of cycle indicates round of SELEX. Arrowhead indicates aptamer-RIG-I complex. Asterisk, free aptamer.

Supplementary Figure S2. The binding affinity (Kd) of AP-treated CL9 aptamer to full-length RIG-I measured by filter assay.

Supplementary Figure S3. HepG2 cells were transfected with siCon or siMDA5 for 36 hours, and then stimulated with PolyI:C for 6 hours.

Supplementary Figure S4. To control the length of polyI:C, polyI:C was digested with RNaseIII for 1, 15, 30, and 60 minutes at 37°C and separated on a 0.8% agarose gel with EtBr staining.

Supplementary Figure S5. Predicted secondary structure of CL9. CL9 specific sequence

were used for prediction of CL9 by M-fold (1).

Supplementary Figure S6. Kinetics of NDV-GFP and VSV-GFP replication. (A) HepG2 cells were infected with NDV-GFP virus for 3 hours, medium was changed, and cells were cultured for an additional 9 or 21 hours before RNA and protein analyses. (B) Similar to (A), except HepG2 cells were infected with VSV-GFP for indicated times.

Supplementary Figure S7. *In vitro* transcribed CL9 by T7 Polymerase was separated on a 12% Urea-PAGE with EtBr staining, and size of it was compared with ssRNA marker.

EXPERIMENTAL PROCEDURES

Binding affinity assays

We determined RNA–protein equilibrium dissociation constants (*K*d's) by the nitrocellulose-filter binding method as described (2). For all binding assays, RNAs were dephosphorylated using alkaline phosphatase(New England Biolab), and 5'-end labeled using T4 polynucleotide kinase (New England Biolabs, Beverly, MA) and γ^{32} PATP (Amersham Pharmacia Biotech, Piscataway,NJ) as described (3). Before binding assay, heat aptamer at 95°C 3min, and then slowly ramp to 37°C at 0.1°C /sec in buffer (40 mM HEPES/pH 7.5, 120 mM NaCl, 5 mM KCl, 5 mM MgCl₂, 0.002% tween-20) for aptamer refolding. Direct binding assays were carried out by incubating ³²P-labeled RNA at a concentration of less than 10 pM and protein at concentrations ranging from 1 mM to 10 fM in selection buffer at 37°C. The fraction of RNA bound was quantified with a PhosphorImager (Fuji FLA-5100 Image Analyzer, Tokyo, Japan). Raw binding data were corrected for nonspecific background binding of radiolabeled RNA to the nitrocellulose filter as described (2) and reported as the mean \pm standard error of the mean (SEM) of three experiments.

In Figure 1C & Supplementary Figure S1, binding mixture of 32 P-labeled aptamer(1 X 10⁵ CPMA), 3 µg of yeast tRNA, and100 nM of RIG-I protein was separated in 4% PAGE containing 1.33% Glycerol. To detection radioactivity of aptamer, it was exposed on X-ray film (Fujifilm).

Size control of PolyI:C

To obtain the short form of polyI:C, 1 U of RNaseIII (Takara) was incubated with 10 µg of polyI:C at 37°C for 1 hour, and fragmented polyI:C was precipitated using phenol/ethanol precipitation (4).

8

REFERENCES

- 1. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res*, **31**, 3406-3415.
- 2. White, R., Rusconi, C., Scardino, E., Wolberg, A., Lawson, J., Hoffman, M. and Sullenger, B. (2001) Generation of species cross-reactive aptamers using "toggle" SELEX. *Mol Ther*, **4**, 567-573.
- 3. Fitzwater, T. and Polisky, B. (1996) A SELEX primer. *Methods Enzymol*, **267**, 275-301.
- 4. Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T.S., Fujita, T. and Akira, S. (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. *J Exp Med*, **205**, 1601-1610.