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Supplementary Table 3. Data Analysis Teams (DATs) in the MAQC-II project 

DAT Org. Code Organization Name DAT Leader Endpoints* 
(Original) 

No. Models 
(Original) 

Endpoints 
(Swap) 

No. Models 
(Swap) 

DAT1 ABT Abbott Laboratories Viswanath Devanarayan 8 53   
DAT2 Almac Almac Diagnostics, UK Juergen von Frese 1 1   
DAT3 CAS Chinese Academy of Sciences, China Tieliu Shi 13 21 13 17 
DAT4 CBC CapitalBio Corporation, China Liang Zhang 13 26 13 26 

DAT5 CDRH Center for Devices and Radiological 
Health, FDA Gene Pennello 3 9   

DAT6 CIPF Centro de Investigacion Principe Felipe, 
Spain Joaquin Dopazo 8 112 8 112 

DAT7 Cornell Weill Medical College of Cornell 
University Fabien Campagne 13 614 13 732 

DAT8 DKFZ German Cancer Research Center, 
Germany Benedikt Brors 10 34 10 36 

DAT9 EPA U.S. Environmental Protection Agency Richard Judson 2 1008 2 1011 
DAT10 FBK Fondazione Bruno Kessler, Italy Cesare Furlanello 13 27 13 13 
DAT11 GeneGo GeneGo Inc. Weiwei Shi 13 30 13 28 
DAT12 GHI Golden Helix Inc. Christophe Lambert 13 52 13 26 
DAT13 GSK GlaxoSmithKline Jie Cheng 13 15 13 13 

DAT14 GT Georgia Institute of Technology – 
Emory University May Wang 4 27 6 15 

DAT15 JHSPH Johns Hopkins Bloomberg School of 
Public Health Rafael Irizarry 6 12   

DAT16 KU University of Kansas Luke Huan 8 19   
DAT17 Ligand Ligand Pharmaceuticals Wen Luo 1 1 1 1 

DAT18 NCTR National Center for Toxicological 
Research, FDA Weida Tong 13 8580 13 8320 

DAT19 NIEHS National Institute of Environmental 
Health Sciences Pierre Bushel 13 311 13 258 

DAT20 NWU Northwestern University Simon Lin 13 278 13 290 
DAT21 Princeton Princeton University Jianqing Fan 3 180   
DAT22 Roche Roche Palo Alto LLC Hans Bitter 6 5310   
DAT23 SA SABioscience Corporation Guozhen Liu 5 112 13 84 
DAT24 SAI Systems Analytics Inc. John Zhang 13 130 13 130 
DAT25 SAS SAS Institute Inc. Russ Wolfinger 13 389 13 377 
DAT26 SDSU South Dakota State University Xijin Ge 8 20   

DAT27 SIB Swiss Institute of Bioinformatics, 
Switzerland Vlad Popovici 10 6 6 18 

DAT28 Spheromics Spheromics, Finland; University of 
Umeå, Sweden Andreas Scherer 9 40 2 16 

DAT29 Tsinghua Tsinghua University, China Xuegong Zhang 13 1660 13 1660 

DAT30 UAMS University of Arkansas for Medical 
Sciences Yiming Zhou 2 4   

DAT31 UCLA Cedars-Sinai Medical Center of UCLA Xutao Deng 1 12   

DAT32 UIUC University of Illinois at Urbana-
Champaign Sheng Zhong 13 52 13 52 

DAT33 UIUC2 University of Illinois at Urbana-
Champaign Nathan Price 13 19   

DAT34 UML University of Massachusetts Lowell Dalila Megherbi 5 5   
DAT35 USM University of Southern Mississippi Youping Deng 13 72   
DAT36 ZJU Zhejiang University, China Xiaohui Fan 13 52 13 52 

Total number of models submitted  19,779  13,287 
Total number of nominated models submitted  323  243 

Total number of models applied to validation sets  18,303  12,195 
Total number of nominated models applied to validation sets  318  241 

*Seventeen (17) of the 36 data analysis teams analyzed all 13 endpoints in the original training-
validation experiment, and 16 teams analyzed all 13 endpoints in the swap training-validation 
experiment.  

 

Nature Biotechnology: doi: 10.1038/nbt.1665



   

MAQC-II Main Paper: Supplementary Information  5/98 
 

 
Supplementary Table 4. Summary information about the options of modeling factors adopted for the 18,060 
models in the original analysis (training=>validation). For these 18,060 models, the requested model description 
information was complete and summarized below. 
 

Factor 
(Levels) Option No. of 

DATs 
No. of 
Models 

Factor 
(Levels) Option No. of 

DATs 
No. of 
Models 

Factor 
(Levels) Option No. of 

DATs 
No. of 
Models 

FC+P 11 5,846 SVM 21 3,600 MAS5 26 8,568 
T-Test 9 609 KNN 13 9,532 Loess 22 6,572 
SAM 7 4,471 Tree 9 1,854 Median 19 1,100 
RFE 6 887 DA 9 1,370 RMA 7 92 
PAM 3 23 NB 7 1,099 refRMA 2 15 
KS 2 803 PAM 4 51 Quantile 2 7 
Wilcoxon 2 78 Logistic 3 85 dChip 1 971 
FC 2 40 ANN 3 20 Mean 1 368 
None 2 39 PLS 2 91 SVN 1 282 
Genetic Algorithm 2 33 Forest 2 4 VSN 1 22 
Fisher 2 5 RFE 1 192 iset 1 14 
Forest 1 1,829 Nearest Centroid 1 26 MAS5+Loess 1 12 
SA 1 869 ML 1 25 PLIER 1 12 
STE 1 861 GLM 1 20 VSN+RMA 1 12 
ReliefF 1 839 SMO 1 19 Genetic Algorithm 1 5 
Genelists 1 313 Barcode 1 12 Bkgd-subonly 1 4 
SVM-Weights 1 196 SDF 1 11 

Summary or 
Normalization 

Method 
 

(17 levels) 

Raw 1 4 
Logistic 1 180 PM 1 10 5-CV 30 12,528 
PCA 1 32 RF 1 8 LOOCV 3 206 
Permutation 1 19 BART 1 7 10-CV 2 3,387 
Welch 1 16 BB 1 7 7-CV 1 1,808 
Bscatter 1 14 EN 1 7 12-CV 1 127 
Vote 1 13 AB 1 6 

Internal 
Validation 

Method  
 

(6 levels) Split Sample 1 4 
Barcode 1 12 

Classification 
Algorithm 

 
(24 levels) 

K-means 1 4 10 27 12,112 
PCC 1 10 None 26 9,120 1 6 480 
Golub 1 7 Mean Shift 5 8,622 20 2 116 
BWSS 1 6 EB 2 23 100 2 7 
eGOMiner 1 3 ComBat 1 204 5 1 4,051 
Pathway 1 2 P.Rank 1 30 2 1 1,231 
TAUC 1 2 OPLS 1 24 40 1 45 
CoxModel 1 1 Agilent 1 22 50 1 12 
P 1 1 Barcode 1 12 

Number of 
Internal 

Validation 
Iterations 

 
(9 levels) 

30 1 6 

Feature 
Selection 
Method 

 
(33 levels) 

eClinical 1 1 

Batch Effect 
Removal 
Method 

 
(9 levels) 

Embedded 1 3     
10~99 32 10,694         
0~9 25 1,510         
100~999 20 5,301         

Number of 
Features  

 
(4 levels) >=1000 8 555         
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Supplementary Table 5. Original validation AUC of nominated models by 17 data analysis teams (DATs) that analyzed all 13 
endpoints in the original training-validation experiment. The median AUC value for an endpoint was calculated based on values 
from the 17 DATs and the mean AUC value for a DAT was calculated based on values from the 11 non-random endpoints (excluding 
I and M). The level of predictability of the 13 endpoints is dramatically different, with median AUC varying from 0.991 (L) to 0.483 (M). 
In addition, the 17 DATs showed large differences in proficiency in developing predictive models, with mean AUC varying from 0.815 
(DAT13) to 0.633 (DAT3). 
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Supplementary Table 6. Swap validation MCC of nominated models by 15 data analysis teams (DATs) that analyzed all 13 endpoints 
in the swap training-validation experiment. The median MCC value for an endpoint was calculated based on values from the 15 DATs and 
the mean MCC value for a DAT was calculated based on values from the 11 non-random endpoints (excluding I and M). The level of 
predictability of the 13 endpoints is dramatically different, with median MCC varying from 0.934 (L) to 0.025 (M). In addition, the 15 DATs 
showed large differences in proficiency in developing predictive models, with mean MCC varying from 0.548 (DAT24) to 0.271 (DAT3). 
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Supplementary Table 7. Swap validation AUC of nominated models by 15 data analysis teams (DATs) that analyzed all 13 
endpoints in the swap training-validation experiment. The median AUC value for an endpoint was calculated based on values 
from the 15 DATs and the mean AUC value for a DAT was calculated based on values from the 11 non-random endpoints (excluding 
I and M). The level of predictability of the 13 endpoints is dramatically different, with median AUC varying from 0.962 (L) to 0.515 (M). 
In addition, the 15 DATs showed large differences in proficiency in developing predictive models, with mean AUC varying from 0.811 
(DAT20) to 0.623 (DAT3). 
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Supplementary Table 8. Samples consistently predicted wrong by most models for the 

two positive control endpoints (H and L) 

SampleID Data 
Set Endpoint 

Total 
number 
of 
models 

Number of 
models with 
wrong 
prediction 

Fraction of 
models with 
wrong 
prediction 

Comment 

P1550-01-E679-U133Plus-2 MM H 889 860 0.967 In original validation set 
P1371-01-E336-U133Plus-2 MM H 889 852 0.958 In original validation set 
P1375-01-E113-U133Plus-2 MM H 888 847 0.954 In original validation set 
II-NB407 NB L 1785 1709 0.957 In original validation set 
              
P0678-01-C118-U133Plus-2 MM H 827 825 0.998 In original training set 
P0067-01-A274-U133Plus-2 MM H 827 823 0.995 In original training set 
P0002-01-FAKE03-U133Plus-2 MM H 827 821 0.993 In original training set 
P0931-01-C648-U133Plus-2 MM H 827 821 0.993 In original training set 
NB528 NB L 889 889 1 In original training set 
NB557 NB L 889 889 1 In original training set 
NB504* NB L 889 872 0.981 In original training set 
NB560 NB L 889 871 0.98 In original training set 
NB523 NB L 889 870 0.979 In original training set 
NB522* NB L 889 870 0.979 In original training set 
NB412* NB L 889 855 0.962 In original training set 

 
*Clinical information of neuroblastoma patients for whom the positive endpoint L was uniformly 
misclassified were re-checked, and in three cases (NB412, NB504, and NB522) incorrect sex 
assignment for endpoint L was revealed. For NB504, the error occurred as the patient's first 
name in Germany can refer to both a boy and a girl. It had actually been corrected five months 
before the MAQC-II results became available. For NB412 and NB522, the actual sex was 
indeed indicated as "W" in the original clinical information table, the German analogue to "F" 
(female). However, the project leader made a mistake when converting the Sex column into the 
mock endpoint L (NEP_S): "F" was converted into "0" (Female), and the rest (including the only 
two cases labeled as “W”) was converted into "1" (Male). It demonstrates that sometimes gene-
expression based classification models could help correct human errors. The higher number of 
consistently mis-predicted samples in the original neuroblastoma training set (endpoint L) might 
explain why the external validation performance is higher than the internal validation 
performance (Figures 2c of Shi L et al., Nature Biotechnology, 2010). 
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Supplementary Figure 1. KNN models developed by different data analysis teams showed 
significant differences in external validation performance. a. MCC; b. AUC. Further investigation 
into the data analysis protocols revealed differences in tunable modeling factors options not 
captured in the model summary information tables (Supplementary Tables 1 and 2). See Parry 
RM et al., The Pharmacogenomics Journal, 2010 for more details. 
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MCC - Original MCC - Swap

AUC - Original AUC - Swap

 
 
Supplementary Figure 2. The pattern of performance estimates of the nominated models 
across 13 endpoints. a-d: MCC as performance metric; e-h: AUC as performance metric; a, c, e, 
g: internal cross-validation; b, d, f, h: external validation. The patterns across the 13 endpoints 
are similar between the original training-validation results and the swap training-validation 
results. The deterioration of external validation performance from internal validation 
performance estimate is obvious for some models. Some DATs clearly reported over-optimistic 
cross-validation performance for at least some endpoints; however, their external prediction 
performance appeared to be consistent with the majority of the other teams. Models nominated 
by DAT7 appeared to have under-estimated both the cross-validation performance and external 
validation performance. Variability in external validation performance from other teams could be 
due to various causes including clerical error.  
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Supplementary Figure 3. Analysis and visualization of Original and Swap validation models’ 
prediction performance MCC of nominated models by 15 data analysis teams (DATs) that 
analyzed all 13 endpoints in the original training-validation experiment. Gray-level “images” (not 
heat-maps) of respectively: the MCC scores for the external independent validation original data 
(a) and swap data (b), for endpoints (in that order) L, H, C, E, K, J, D, B, G, A, F, I*, M*, and 
Organizations, (in that order) DAT24, DAT13, DAT25, DAT11, DAT12, DAT32, DAT10, DAT20, 
DAT4, DAT!8, DAT36, DAT29, DAT7, DAT19, DAT3 . As one can see the darker the image 
pixel intensity is the lower the MCC score is. One can, by simple observation of the images, see 
that, in general, there are brighter (whiter) pixel intensities in image (b) than there are in image 
(a); as the swap MCC values seem to be generally a bit higher than the original data MCC 
values. Additionally, one can easily also observe/confirm, again, by looking globally at the image 
that the first 4 endpoints, L,H, C, E in both the swap and original data seem to be easily 
predictable compared to end points G, A, F, M*, I*,. One can also observe that it appears that 
although both endpoints I* and M* are virtually non-predictable or hard to predict, endpoint M* 
seems to be slightly more predictable than endpoint I* in the case of the swap data. (c) shows 
the gray-level image of the relative errors between the original and swap data External 
Validation MCC values for same end points and organizations described in (a) and (b). Brighter 
(whiter) pixels show the larger differences (and/or inconsistencies) in percentile (%) in the 
prediction of the related endpoints and organizations. Note that since for some end points the 
MAQC-II models were not derived by these DAT teams, in the 2-dimensional “gray image” of 
Figure S11c the exact and/or approximate locations of the MAQC-II candidate models are 
pointed to by arrows, for illustration. (d) & (e) illustrates the number of organizations that made 
about the same prediction (MCC value), in the External Validation of respectively the Original 
and Swap data, for each of the endpoints, L, H, C, E, K, J, D, B, G, A, F, I*, M*. One can 
observe by inspection of (c), (d) and (e) how model prediction consistency between Original and 
Swap Data generally varies and decreases as a function of the 13 End points and the 15 DAT 
models. 
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c) MCC Relative Error, Original Data CV-->EV
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Supplementary Figure 4. Analysis and visualization of Original data External and Cross 
validation models’ prediction performance MCC of nominated models by 17 data analysis teams 
(DATs) that analyzed all 13 endpoints in the original training-validation experiment. Gray-level 
“images” (not heat-maps) of respectively: the MCC scores for (a) the External Validation (EV) of 
Original Data and (b), Cross Validation (CV) of Original Data for the 13 End Points and 17 DATs 
(DAT24, 13, 25, 11, 12, 32, 10, 20, 4, 8, 36, 29, 35, 7, 33 and, 3) in this order. As one can see 
the darker the image pixel intensity is the lower the MCC score is. One can, by simple 
observation of the images, see that, in general, there are brighter (whiter) pixel intensities in 
image (a) than there are in image (b); as the CV MCC values are generally higher than EV MCC 
values. In particular, one can easily observe from (a) that endpoints A and B were over-
estimated in general by most DATs. Additionally, one can also bserve/confirm, again, by looking 
globally at the image that the first 4 endpoints, L, H, C, and E in both the CV and EV seem to be 
easily predictable compared to end points G, A, F, M*, and I*. (c) shows the gray-level image of 
the relative errors between the EV and CV MCC values for same end points and organizations 
described in (a) and (b). Brighter (whiter) pixels show the larger differences (and/or 
inconsistencies) in percentile (%) in the prediction of the related endpoints and organizations. 
One can observe that the differences are more significant than in the case of Figure S11. Note 
that since for some endpoints the MAQC-II candidate models were not derived by these DAT 
teams, in the 2-dimensional “gray image” of Figure S11c the exact and/or approximate locations 
of the MAQC-II candidate models are pointed to by arrows, for illustration. (d) & (e) illustrates 
respectively the number of organizations that made about the same prediction (MCC value), in 
the CV and EV of the Original data for each of the endpoints, L, H, C, E, K, J, D, B, G, A, F, I*, 
M*. One can observe by inspection of (c), (d) and (e) how model prediction overestimation 
(CV EV) varies and increases as a function of the 13 End points and 17 DATs models. 
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Supplementary Figure 5. Correlation of candidate model selection between internal cross 
validation and external validation. (A) DATs computed classification model performance using 
three performance metrics (MCC, accuracy, and AUC) and averaging 10 iterations of 5-fold 
cross validation. At least three models from both internal cross validation and external validation 
are required to compute correlation for each DAT and endpoint pair. Light gray squares indicate 
that only zero, one, or two models are available. Because the calculation of correlation requires 
three data points, the data analysis teams who were not listed are those who have not provide 
enough data to compute correlation for at least one endpoint. For example, GHI would have 
been included in the original training-validation panel if it provided internal performance 
estimation for the 26 additional models added in validation. Currently, because only 26 of the 52 
models listed in Table S1 had both internal and external performance, and 2 models per 
endpoint, no correlation could be calculated. As another example, FBK only provided one model 
per endpoint during swap; therefore no correlation can be calculated on a per endpoint basis. 
Green squares indicate a positive correlation between internal cross validation scores and 
external validation scores. Red squares indicate negative correlation. The brightness of red and 
green squares indicates the degree of correlation, i.e., a larger absolute Pearson’s correlation 
coefficient results in a lighter square. Dark gray squares indicate that the p-value of correlation 
is larger than 0.1. The black bar within each box represents the absolute covariance. Data 
analysis teams are sorted from top to bottom by decreasing number of endpoints analyzed, then 
by decreasing total number of models. Endpoints are sorted from left to right by increasing 
percentage of positive correlations minus negative correlations. The image bar on the right 
summarizes each DAT with the percentage of positive correlations (green), negative 
correlations (red), and relative diversity of the DAT (blue). Diversity is a measure of the number 
of unique feature selection/classification methods used. (D) Similar results for the swapped 
data. (B, E) Summary of the positive and negative correlations for each end point. (C, F) 
Summary of the positive and negative correlations for each performance metric.  
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Supplementary Figure 6. Impact of modeling factors on model performance: The empirical 
BLUPs (Best Linear Unbiased Predictor) of each level for all the factors across 13 endpoints, 
with clear labeling of interaction terms. See Figure 4 for more information.  
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Supplementary Figure 7. A decision-tree model of the relative importance of modeling factors 
on external validation prediction performance in terms of MCC.  
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Supplementary Figure 8. Three aspects for assessing the performance of a data analysis 
protocol (DAP) in decreasing order of priority: prediction performance, robustness, and 
biological relevance of the gene signatures. Robustness, defined here as the reproducibility of 
gene signatures across experiments was an important criterion for comparing MAQC-II model 
performance. Lack of robustness is more likely when features are selected based on ranking 
significant genes by p-value from a t-test, especially when a small number of genes are selected 
(Shi, L. et al. Nat Biotechnol 24, 1151-1161 (2006) and BMC Bioinformatics 9 Suppl 9, S10 
(2008)). While the approach can achieve a high sensitivity in selecting true positive genes, the 
high variance of individual genes with few replicates can result in discordant significant genes 
lists even in high quality experiments. In contrast, features selected based on the magnitude of 
expression changes, or fold change, combined with a non-stringent p-value cutoff, tend to be 
more concordant, providing more robust models. A compromise entails calculating gene 
variance as a weighted average of individual gene measured variance and the average gene 
variance for the entire array. Criticism of microarray data for lack of reproducibility has been 
largely discounted since discordant gene lists are largely the result of selecting genes by small 
p-value when, in fact, it is the consequence of poor estimates of true variance used to determine 
the t statistic. MAQC models were also compared on the basis of ability to embody mechanistic 
relevance of the endpoints. With increasing data on gene and protein functions and the 
biological and metabolic pathways, as well as growing empirical data on the molecular 
mechanisms of disease or toxicity, a significant gene list of a model can be examined for 
consistency with known biology. Consistency between the model’s features and the biology can 
be viewed as enhancing model validity, whereas inconsistency even with accurate prediction 
could mean that improvements in the model are possible. Biological considerations can also be 
used to guide feature selection such that a model developed that includes such genes would 
inherently include the corresponding mechanistic relevance. 
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Supplementary Figure 9. Feature landscapes comparing swap features lists to original feature 
lists. (a) endpoint J (overall survival milestone outcome of neuroblastoma patients); (b) endpoint 
K (event-free survival milestone outcome of neuroblastoma patients); (c) endpoint L (gender of 
neuroblastoma patients); (d) endpoint M (randomly assigned class label). These landscapes 
show that the endpoint determines the reproducibility of features identified by different teams 
and the model performance after data swap. The largest peaks indicate that more than 55% of 
contributing teams selected that feature in their nominated models. The medium peaks indicate 
that 45%-55% teams selected that feature. The smaller peaks represent features chosen in 
35%-45% of the nominated models. Green and purple peaks in the merged landscape indicate 
peaks chosen at the same rate in the original and the swap analyses. Peaks of different sizes 
may also be overlapped in the merged image, producing multicolored peaks. Endpoints with 
few, small peaks indicate difficult biological problems where teams arrived at many diverse 
solutions with little agreement in feature lists (a). On the other hand, large peaks in the emerged 
image indicate an easy endpoint to predict and different teams arrived at models that used 
many common features. 
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Supplementary Figure 10. Further analysis on the relationship between stability of feature lists 
and the level of endpoint predictability. The plot in panel (a) , top-left, displays the performance-
stability analysis for the candidate models at endpoints(both Blind and Swap), as submitted by 
the FF organizations. The ordinate is the IntraCC stability to study how lists change varying data 
from Blind to Swap, while differences between the lists in the two experiments are analyzed in 
Panel (c), right. The MCC coordinate is the median of the MCCs for endpoint and same 
experiment. For each point, the rectangles are defined by CI (95% bootstrap Student's t). The 
area of the plot can be split into 4 main zones: LowerRight (good classification performances 
and good stability), UpperRight (good classification performances and bad stability), UpperLeft 
(bad classification performances and bad stability) and LowerLeft (bad classification 
performances and bad stability). Letters nearby points indicates the endpoint, while a plus sign 
marks the points corresponding to the Swap experiments. Blind and Swap experiments are 
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connected by segments. Panel (b), bottom-left, analyzes most extracted common features for 
each endpoint. We first compute the median m(edp, exp) of the length of the FF submitted lists 
for each endpoint edp and for each experiment exp (m can be different in the Blind and the 
Swap experiment for the same endpoint). Then we compute the corresponding Borda lists and 
consider its first m(edp,exp) elements obtaining the top-m(edp, exp) partial Borda lists B(edp, 
exp). For each endpoint edp we then consider the intersection between the Borda partial lists for 
the Blind and the Swap experiments, i.e. the number N(edp) of genes occurring in both the lists 
for each endpoint. The indicator IC(edp)=2*N(edp)/(med(edp,Blind)+med(edp,Swap)) is used in 
Panel b to decreasingly rank the endpoints. In each subplot, a silhouette graph describes the 
common genes for the endpoint: decreasing bar lengths indicate for each gene g the mean 
number of its extractions normalized by the number L(edp) of features for the endpoint: 
IP(g,edp)=(E(g,edp,Blind)+E(g,edp,Swap))/(2*L(edp)). The randomly labeled endpoints are 
lowest ranked, while L, E, and H are ranking high. Panel (c): Analysis of inter-experiment list 
stability compared it with external MCC performance. For each pair (edp, exp) the partial top- 
med(edp, exp) Borda list B(edp, exp) is used in alternate experiment. Swap experiment is run 
with features belonging to B(exp, Blind) by means of a 10x5-CV with linear Support Vector 
Machine models, retrieving a MCCBlind(Swap) value. Analogously, we compute the 
MCCSwap(Blind) for the same endpoint. InterCC on the x axis ranks endpoints for increasing list 
variability between experiments.  
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Supplementary Figure 11. The stability of feature lists is positively correlated with endpoint 
predictability. The feature lists used in the nominated models from the original training-validation 
experiment were compared to those from the swap experiment. Contingency tables and the 
Fisher’s exact test statistic were used to summarize a probability that the degree of overlap 
between the lists is the result of random chance. The P values were averaged over all pairs of 
feature lists. The resulting measure of the stability (1 – P) of feature lists positively correlates 
with external validation performance. 
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Supplementary Figure 12. Prediction error on a per-sample basis - some samples were 
consistently misclassified by almost all models. (a) prediction of the original validation set; (b) 
prediction of the swap validation set (i.e., the original training set); (c) sample prediction error 
rates by endpoint for the original validation; and (d) sample prediction error rates by endpoint for 
the swap validation. One reason for hard-to-predict samples is that the “true” label is wrong. For 
example, for endpoints H and L (sex), a female patient may be recorded as male (or vice versa). 
Another reason is that the hard-to-predict samples represent a distinct subset of samples which 
just cannot be reliably predicted given the information in the datasets. These samples may 
represent subsets that would be identifiable given other data or just subsets whose class 
membership follows a different set of rules (e.g., outcomes that follow a different causal 
pathway). Whatever the reason that hard-to-predict samples are hard to predict, it seems that 
most if not all nontrivial datasets have them. They even occur in datasets in which class labels 
have been assigned at random. 
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Supplementary Figure 13. The seven performance metrics measure different aspects of the 
prediction performance of a model. Shown in (a) is the pair-wise correlation between seven 
prediction performance metrics for 18,303 models. AUC values favor modes for which 
continuous prediction values are provided (b and c). Notice that for most models with 
continuous prediction values, AUC (Continuous) is greater than AUC (Binary) in which the 
continuous prediction values were dichotomized based on the prediction decision value pre-
defined at the training stage.  Different performance metrics (MCC and AUC) can lead to 
different model selection, highlighting the importance of the choice of performance metric. Some 
models showed reasonably good performance in terms of AUC; however, their performance in 
terms of MCC appeared to be low. The main reason for this discrepancy was that the decision 
threshold determined during the model development stage turned out to be non-optimal for the 
validation data (see Supplementary Documents 1 and 2 in Supplementary Data). Decision 
threshold is an important part of a predictive model; it must be determined during the training 
stage and should be frozen. This illustrates the need for guidelines for determining decision 
thresholds. 
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Supplementary Document 1: 
 
Validation performance of 318 MAQC-II nominated models 
 
In the following pages of this document, one page contains the results for one particular 
endpoint (A, B, C, … , M). 
 
On each page, there are six plots: 
 

1. [Top Left] ROC curves: for models giving continuous or quasi-continuous outputs, the 
empirical ROC curves are plotted (green solid line). For models giving binary outputs, a 
dot is plotted at (1-Specificity, Sensitivity) (black circle). The RBWG candidate model is 
plotted in red color. 
 

2. [Top Right] AUC: the estimated AUC and its approximate 95% confidence interval. 
Green: models giving continuous or quasi-continuous outputs; Black: models giving 
binary outputs; Red: the RBWG candidate model. 
 

3. [Middle Left] Plot of the binary performance in the ROC space: for models giving 
continuous or quasi-continuous outputs, a pre-specified dichotomizing threshold of 0.5 is 
applied (green).  
 

4. [Middle Right] MCC: for models giving continuous or quasi-continuous outputs, two MCC 
results are given. Green: dichotomizing the outputs using the pre-specified threshold of 
0.5; Blue: dichotomizing the outputs using the threshold value that maximizes the MCC 
on the validation dataset. 
 

5. [Bottom Left] Plot of the binary performance in the ROC space: for models giving 
continuous or quasi-continuous outputs, the threshold value that maximizes the MCC on 
the validation dataset is applied (blue). 
 

6. [Bottom Right] Plot of the constant MCC contours in the ROC space for the prevalence 
of the endpoint.
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Supplementary Document 2: 
 
The performance metrics (MCC, AUC, Accuracy, RMSE) 
 
Performance Metrics in Binary Medical Classification Problems 
Brandon D. Gallas and Weijie Chen 
US FDA, Center for Devices and Radiological Health 

 

This discussion is based on the following classical references in Signal Detection Theory and 
Medical Decision Making: Green and Swets (1966) and Metz (1978). A nice overview of the 
development of this field from its original application, diagnostic medical imaging, to the modern 
microarray technologies can be found in Wagner (2007). 

 

Fundamental Performance Metrics 
For the binary classification task, many prediction models first yield a score that is compared 

to a threshold to make the binary decision, the diagnosis. We can use a 22×  truth/decision 
table to present the frequency of each of the four possible outcomes in an experiment (See 
Table 1, which gives the truth/decision validation results for RBWG candidate model, Endpoint 
A). There are two correct decisions (true positives ( )TP  and true negatives ( )TN  ) and two 
incorrect decisions (false positives ( )FP  and false negatives ( )FN  ). We often summarize this 
table by a pair of metrics: sensitivity ( )Se  and specificity ( ).Sp  Sensitivity is the rate at which you 

correctly call diseased patients diseased; it is also referred to as the TP  fraction ( )TPF  . 
Specificity is the rate at which you correctly call normal patients normal; it is also referred to as 
the TN  fraction ( ).TNF  The rates of incorrect decisions are the FP  fraction ( )TNF1FPF −=  
and the FN  fraction ( ).TPF1FNF −=   

There is an alternate “transposed” performance perspective that also summarizes Table 1. 
Instead of normalizing by the truth (row-sums), as we did for ( )SpSe,  , we normalize by the 
decisions (col-sums). This pair of metrics includes the positive and negative predictive values 
( )NPVPPV,  and focuses on the patient; ( )SpSe,  focuses on the population. The PPV is the 
probability that if a patient is diagnosed as (disease) positive, the patient actually has the 
disease. The NPV  is the probability that if a patient is diagnosed as (disease) negative, the 
patient is actually normal. 

Finally, there is a less common, but especially useful, way to summarize Table 1 using 
positive and negative likelihood ratios ( ).NLRPLR,  Like ( ),NPVPPV,  likelihood ratios focus on 
the patient. The PLR tells how likely subjects with disease are to have a positive result 
compared to subjects without disease. The NLR tells how likely subjects with disease are to 
have a negative result compared to subjects without disease. 
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Table 1: Truth/Decision table of outcomes plus definitions of performance. 

 Decision: Negative Decision: Positive 

Truth: Normal 

N0 = 60 cases 

TN = # of true neg = 31 

TNF = Sp = 
FPTN

TN
+

= 0.52 

FP = # of false pos = 29 

FPF = 1-Sp = 
FPTN

FP
+

= 

0.48 

Truth: Disease 

N1 = 28 cases 

FN = # of true neg = 8 

FNF = 1-Se = 
FNTP

FN
+

 = 0.29 

TP = # of true pos = 20 

TPF = Se = 
FNTP

TP
+

 = 0.71 

p = prevalence 

  
FPTNFNTP

FNTP
+++

+=  

NPV = 
FNTN

TN
+

= 0.79 

= ( )
( ) ( ) pSepSp

pSp
×−+−×

−×
11

1  

PPV = 
FPTP

TP
+

= 0.68 

= 
( ) ( )pSppSe

pSe
−×−+×

×
11

 

 NLR =
Sp

Se−1  = 0.55 

    = 
TN

FPTN
FNTP

FN +
+

 

PLR =
Sp

Se
−1

 = 1.48 

    = 
FP

FPTN
FNTP

TP +
+

 

 

During model development, ( )SpSe,  and ( )NLRPLR,  are more appropriate than 
( )NPVPPV,  for one simple reason. The pairs ( )SpSe,  and ( )NLRPLR,  do not depend on 
prevalence ( ),p  whereas the pair ( )NPVPPV,  does depend on prevalence. This is because the 
cases used in model development are often obtained by convenience rather than by 
prospectively or randomly sampling from an intended-use population. Thus the prevalence used 
in model development may not reflect the prevalence in the intended use population. Let’s 
consider an example. 

Ignoring measurement error for a moment, let’s assume that the fractions given in Table 1 are 
the true rates for a diagnostic device. If this model is validated in a low-prevalence screening 
population, where ,01.0=p  then ( )SpSe,  and ( )NLRPLR,  do not change, but 
( ) ( )993.0,016.0NPVPPV, =  is quite different from that measured on the training dataset 
( ) ( )79.0,68.0NPVPPV, =  depicted in the table. If instead, this model were tested in a high-
prevalence high-risk population, where ,4.0=p  then again, ( )SpSe,  and ( )NLRPLR,  do not 
change, but ( ) ( )672.0,525.0NPVPPV, =  is again different from that measured in the training 
dataset. 
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Figure 1: Left: A single (Se,Sp) operating point in ROC space defining regions where 
otherpoints are better (A), worse (D), and ambiguous (B,C). Right: An operating point on a 
hypothetical ROC curve and its dependence as the decision threshold is varied. 

 

For ( )NPVPPV,  to be appropriate, the proportion of diseased cases in the validation dataset 
should approximate the prevalence of disease in an intended-use population. This may not be 
the case for the MAQC II datasets. There was no discusion about whether the datasets were 
collected in a prospective way from a well-defined intended-use population. Consequently, we 
do not want to base our performance analysis on the prevalence-dependent metrics like 
( ).NPVPPV,   

Unfortunately (Se, Sp) and (PLR, NLR) are themselves troublesome. First, there is possible 
ambiguity when comparing prediction models. One model may have better Se but worse Sp 
than another. Likewise, one model may have better PLR but worse NLR. Note that these 
conditions are not equivalent. Biggerstaff (2000) has shown that the comparison could be done 
with (PLR, NLR), not (Se, Sp). The (PLR, NLR) pair of metrics has smaller regions of ambiguity 
than (Se, Sp), shown in the left plot of Fig. 1 as Regions B,C bounded by the solid lines with 
slopes PLR and NLR passing through the model's performance operating point (Se, Sp). The 
regions of ambiguity for (Se, Sp) are Regions B,C bounded by the dashed lines. 

The other troublesome characteristic of ( )SpSe,  and ( )NLRPLR,  stems from the ambiguity in 
selecting the threshold. Optimally selecting a threshold can be done by maximizing the 
expected benefit/utility (or minimizing the expected risk/cost) [Green and Swets 1966, Metz 
1978, Patton 1978, Wagner et al 2004]. The selection depends on the prevalence of the disease 
or condition of interest, and the utility parameters--the positive utilities of the two kinds of correct 
decisions ( UTP  and UTN  ) and the negative utilities of the two kinds of incorrect decisions ( 

FNU  and FPU  ). The expected utility is then 

( )( ) ( )( ) ( ).1SpSp1Se1Se pUUpUUU TNFPFNTP −××+−×+×−×+×=   Eq. 1 
We have already indicated that the proportion of diseased cases in the MAQC II validation 

datasets may not approximate the prevalence of disease in an intended-use population. 
Therefore, we should not use this dataset to estimate the prevalence. The utility parameters, 
however, are free parameters that are highly dependent on the what can and will be done to 
clinically manage and treat the patient. While they can be clearly stated in the abstract, 
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specifying them for an application is very context dependent, making for a very complex (and 
often very subjective) task. Since there has been no discussion of how to utilize the classifiers 
for clinical management, there is no way to specify utilities. 

We can avoid selecting a threshold by considering all thresholds. The receiver operating 
characteristic (ROC) curve maps out the trajectory of the ( )SpSe,  pair as that threshold is varied 
over its entire range (See the right plot of Fig. 1). The ROC curve is the fundamental 
prevalence-independent picture of model performance in the binary task, as well as a pre-
requisite for optimizing the expected benefit (where the prevalence and utilities then enter). 

It may appear that we have complicated our ability to compare two prediction models by not 
selecting a threshold, but in fact, by considering all thresholds, we can make definitive 
comparisons more often. By mapping out the ROC curve of each model, we may find that one is 
higher (better) everywhere than the other. In other words, one model has a higher sensitivity 
than the other at every specificity. Alternatively, we may find that the two models yield the same 
ROC curve. This means that the two prediction models have the same performance 
characteristics. Finally, we may find that the two ROC curves cross. This case is troublesome; 
picking the better prediction model requires an expected utility analysis. 

To reduce the information in the ROC curve to a single summary metric of performance 
without specifying the prevalence and utilities, we can use the area under the ROC curve 
( )AUC . If the two curves do not cross, the one with the higher AUC has a higher sensitivity at 
every specificity. Furthermore, the AUC  has several meaningful interpretations. First, the AUC  
has a nice elementary interpretation: it is the sensitivity averaged over all specificities,  

( ).SpSeAUC d∫=          Eq. 2 
The next interpretation of AUC comes from its nonparametric estimate. This estimate is a 

rescaled version of an elementary nonparametric statistic called the Wilcoxon-Mann-Whitney 
(WMW) statistic, a simple measure of the separation of two distributions. This statistic is given 
by 
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are success indicators of whether the prediction model successfully scores the thj  diseased 
case higher than thi  normal case, and ji tt 10 ,  are the prediction model scores for the 

0,...,2,1 Ni =  normal and 1,...,2,1 Nj =   diseased cases. 
The last and most common interpretation of AUC is probabilistic. This interpretation considers 

the probability that a randomly selected diseased case will be scored higher than a randomly 
selected normal case, plus 0.5 times the probability that the cases are tied: 

( ) ( ) ( ) ( ).5.0AUC 0101 ijijij ttPttPsEE =+>==      Eq. 5 
This probability is related to the triage task, where a doctor has two patients and must decide 
who to treat first. 
Combining Sensitivity and Specificity 
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There are a few types of prediction models that can only make the binary decision, which 
yields a single operating point (se, Sp) in ROC space. To summarize the performance of such 
models with a single summary performance metric, we must combine Se  and Sp . At the 
extremes, we may consider Se  and ignore Sp,  or vice versa. The optimal combination, as 
stated above, depends on prevalence and the utility parameters. In the following, we shall 
describe a few combinations proposed by the MAQC II consortium, and relate them to AUC and 
the expected utility when possible. These measures are not recommended for the MAQC II 
model analyses as they either implicitly assume certain prevalences and utilities, or are explicitly 
prevalent dependent. 

Accuracy 
Accuracy and its complement, the probability of misclassification (PMC), or error rate, are the 

most straightforward summaries of performance: 

.
FPTNFNTP

TNTPPMC1Accuracy
+++

+=−=       Eq. 6 

This metric pools cases across truth status and returns the proportion of correct decisions. With 
a little algebra, we can show that Accuracy is a prevalence weighted average of sensitivity and 
specificity: 

( ) .Sp1SeAccuracy ×−+×= pp        Eq. 7 
In terms of expected utility, Accuracy implicitly assumes that the utilities of correct decisions 

equal 1.0, and utilities of incorrect decisions equal 0.0. More generally, Accuracy is linearly 
related to the expected utility whenever the utilities of correct decisions are equal and the 
utilities of incorrect decisions are also equal. 

AUC(Binary Scores) 
Another summary of sensitivity and specificity is their average with equal weights. 

Interestingly, this average equals the empirical AUC defined in Eq. 3 when the scores are 
limited to zeros and ones. This summary has the same implicit assumptions for the utilities as 
Accuracy, and additionally assumes that the population prevalence equals 1/2. 

Matthew's Correlation Coefficient 
The Matthews Correlation Coefficient ( )MCC  is not exactly an average of sensitivity and 

specificity. It is normally written as a function of the truth/decision table cell counts (Table 1); 
namely, 

( )( )( )( ) .
FNTNFPTNFNTPFPTP

FNFPTNTPMCC
++++

×−×=      Eq. 8 

Consequently, its connection to expected utility is a bit more complicated. 

The relationship between MCC  and Se  and Sp is 

( )( ),1NPVPPV1SpSeMCC −+−+=       Eq. 9 
the geometric mean of a prevalence independent term and a prevalence dependent term. To 
show the equivalence of Eqs 8&9, replace the rate quantities in Eq. 9 with their equivalent 
expressions using count quantities ( ).FNFP,TN,TP,  For more insight into this equation, notice 
that the first term is a rescaling of the average of Se  and Sp  , which as mentioned above, is the 
empirical AUC  when the scores are binary. The second term is a like quantity from the 
transposed perspective. 
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The result above contradicts a current misbelief that MCC  is independent of prevalence. This 
misbelief comes from a perceived characteristic that MCC  is less dependent on prevalence 
than Accuracy and more stable when the number of case mix is unbalanced. Equation 9 shows 
that this is the result of the balancing of the prevalent dependent part ( )1NPVPPV −+  by the 
rescaled AUC  ( ).1SpSe −+  As such MCC  is less stable than AUC  when the case mix is 
unbalanced; AUC  does not depend on case mix. 

Not only does MCC  depend on prevalence, but the dependence is nonlinear. A little algebra 
on Eq. 8 or Eq. 9 can express MCC as an explicit function of Se, Sp and prevalence p as 
follows, 

)11)(
1

1(

1

Sp
p

pSeSe
p

pSp

SpSeMCC
−+−

−
+−

−+=      Eq. 9a 
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Se=0.9, Sp=0.9

Se=0.9, Sp=0.7

Se=0.9, Sp=0.3

Se=0.9, Sp=0.5Se=0.5, Sp=0.9

 
Figure 2: A plot of the prevalence dependence of Matthews correlation coefficient (MCC). 
 

We demonstrate the prevalence dependence of MCC  in Fig. 2 for several different 
performance operating points. Note the skew when Sp,Se ≠  and the symmetry when SpSe,  
are swapped. For comparison, a plot of Accuracy for ( ) ( )5.0,9.0SpSe, =  would be a straight line 
connecting ( )5.0,0.0  and ( )9.0,0.1  and its symmetric twin when SpSe,  are swapped; a plot of 
AUC from binary scores with ( ) ( )5.0,9.0SpSe, =  would be flat at 0.7. 

MSE 
The mean squared error ( )MSE  is 
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( ) ,1MSE 2
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where kt   are the prediction model scores for all 10,...,2,1 NNNk +==  cases, regardless of 
truth status, and ky  are the truth labels. Please notice that, when the scores and truth are 
binary, 
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The terms in the sums are ones and zeros, which are unchanged when squared. Consequently, 
Accuracy.-1PMCMSE ==         Eq. 12 

We have already shown that Accuracy is prevalence dependent. As such, MSE is prevalence 
dependent as well. 

Unlike the previous metrics in this section, MSE  is not limited to situations where the scores 

are binary. However, in this case MSE has the undesirable characteristic that it is not invariant 
to monotonic transformations of the data. Monotonic transformations do not change the rank 
ordering of the scores, the ROC curve, or the AUC. Monotonic transformations also do not 
change the maximum expected utility for a given prevalence and set of utility parameters. 

Variance and Covariance 
The performance metrics given in the previous section are all random quantities when 

estimated with finite datasets. As such they are meaningless without an assessment of their 
uncertainty. In this section, we describe a bootstrapping method for comparing ( )SpSe,  points in 
ROC space and give the U-statistic variance estimates of Se,  Sp,  and AUC  that we use in the 
analyses of the prediction models. 

The bootstrapping method we use to compare ( )SpSe,  points in ROC space is as follows. In 
each of 1000 iterations, we sample with replacement 0N  normal cases and 1N  disease cases 
from the available dataset. Then we generate the ( )SpSe,  pair or the difference in ( )SpSe,  pairs 
from two models. The 1000 pairs represent the distribution of ( )SpSe,  from independent 
sampling, assuming the empirical distribution reflects the true distribution. This assumption is 
supported by the fact that the empirical distribution is the maximum likelihood estimate (MLE) of 
the true distribution. 

The U-statistic variance estimates seem natural since the WMW AUC  given in Eq 3 is the U-
statistic estimate of the population AUC  given in Eq. 5 [Randles and Wolfe 1979]. U-statistics 
are also nice because they are unbiased, nonparametric, and usually have the smallest 
variance among all unbiased estimators. 

For Se  and Sp,  the U-statistic variance and covariance estimates come from the sample 
variance and covariance of the corresponding Bernoulli trials. In other words, let jrir tt 10 ,  be the 

scores for the normal and diseased cases for the thr  prediction model. Then the Bernoulli 
successes are 11 0 =− irt  when model r  scores normal-case i  correctly and 11 =jrt  when 
model r  scores disease-case j  correctly. The variances and covariances are 
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The (co)variance calculation for AUC  is a bit more complicated. While we use U-statistic 

estimates [Bamber 1975, Campbell et al. 1988, Gallas 2006], there are other nonparametric 
options[DeLong et al. 1988], as well as parametric options[Dorfman and Alf 1969, Metz et al. 
1998, Hanley 1989]. 

The expressions for the U-statistic estimates we show are based on the work of Gallas 2006. 
The estimates make use of the success indicators (Eq. 4) with the added model index .r  The U-
statistic estimate of the variance of AUC and the covariance between the AUC  of two (fixed) 
models is 

rrrrrrrrrrr MMcMcMcMcAUC 444332211
ˆˆˆˆˆ)r(âv −+++=     Eq. 17 

'4'44'33'22'11'
ˆˆˆˆˆ)',|,v(ôc rrrrrrrrrrrr MMcMcMcMcrrAUCAUC −+++=   Eq. 18 

where the coefficients kc  and moment estimates '
ˆ

krrM  for 4,3,2,1=k  are given in Table 2. 
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Results 

In the following, we demonstrate some performance analyses. We limit ourselves here to 
MAQC II validation data endpoint A and the 252 =N  data analysis teams (DAT) candidate 
models submitted. From these 25 candidates, the RBWG selected one model as the endpoint A 
candidate. Much of these analyses are repeated for the other MAQC II endpoints and the 
results can be found in the supplemental material. 
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Figure 3: Empirical ROC curves for prediction models with continuous scores, (Se,Sp) 
operating points for models with binary scores, and the binary-score RBWG candidate model for 
Endpoint A (see arrow). 
 
Comparing an ROC curve to an operating point 

The MAQC II standard operating procedures for the DATs recommended that continuous 
scores be given and required that binary prediction outcomes be provided. As such, some DATs 
provided continuous scores and all DATS provided prediction outcomes. The only way to 
analyze this data without assuming a prevalence (explicitly or implicitly) is to present this data 
graphically. In Fig. 3 we show the ROC curves for the Endpoint A prediction models. The dots 
show the ( )SpSe,  of the prediction models that only gave binary scores; they only have one 
operating point. The lines connect ( )SpSe,  operating points for different continuous-score 
models. Most of the dots and lines lie above the diagonal chance line, but a few do not. 

The RBWG candidate model is binary, and its single operating point is close to the outer edge 

of the ROC curves. With Sp  near ,5.0  the 7.0Se =  of this model is pretty good. However, there 
is another binary score model with similar Se,  but better .78.0Sp =
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Figure 4: Bootstrap ROC curves and (Se,Sp) operating points for the binary-score RBWG 
candidate prediction model (A), the highest AUC binary-score model (B), the highest AUC 
continuous-score model (C), and the lowest AUC model (D). In the bottom-left plot, we also 
show the bootstrap (Se,Sp) operating points for the continuous-score model after applying a 
threshold of 0.5. 

 

Given the size of the datasets, the uncertainty in our estimates of ( )SpSe,  is fairly substantial. 
In Fig. 4 we show the bootstrapping results for the RBWG candidate model (top left), the highest 
AUC  binary-score model (top right), the highest AUC  continuous-score model (bottom left), 
and the lowest AUC  model (bottom right). For the continuous-score model, we can plot the 
ROC curves from bootstrapping, as well as the ( )SpSe,  points. The difference between the 
lowest and highest Se  in each plot is about 0.5, while the difference between the lowest and 
highest Sp  in each plot is about 0.3. 
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Figure 5: Confidence boxes derived by the product of 97.5% confidence intervals in the 
separate Se and Sp directions. The solid lines show the bootstrap results and the dotted lines 
with asterisk corners show the analytical results. 
 

We can use the bootstrap distributions of ( )SpSe,  to define confidence boxes in the 2D ROC 
space. These are the solid line boxes shown in Fig. 5. Likewise, we can use the variance 

estimates for Se  and Sp  to define the boxes. These are the dashed boxes with the asterisks in 
the corners. Note that the 2D boxes are the product of 97.5% 1D confidence intervals in the 
separate ( )SpSe,  dimensions. The consequence of this product is that the 2D box is not a 
97.5% confidence box; it contains about 97.5% x 97.5%=95% of the samples. If we were to plot 
these boxes on top of one another, the RBWG candidate model would overlap considerably with 
the highest AUC  continuous-score model, be adjacent to the highest AUC  binary-score model, 
and would have a bit of an overlap with the lowest AUC  model. However, we would not be 
accounting for  
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Figure 6: The difference in (Se,Sp) operating points between the RBWG candidate models and 
the alternate models: highest AUC binary-score model (B), the highest AUC continuous-score 
model (C), and the lowest AUC model (D). 
 
the correlations in the data that exist because each model is tested on the same data. 

In Fig. 6 we show the difference between the ( )SpSe,  points for the RBWG candidate model 

and the three other models. The lines in these plots show the lines of constant PLR and NLR 
of the three comparison models. As such, when points fall in the upper left region, they indicate 
that the RBWG candidate performed better on that bootstrap sample. When points fall in the 
lower right region, they indicate that the RBWG candidate performed worse on that bootstrap 
sample. Unlike comparing the confidence boxes, this analysis accounts for the correlations 
generated from the models being tested on the same data. Please refer to the small table listing 
the probabilities that the RBWG candidate model is better and worse than the three comparison 
models according to the  
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Figure 7: The differences between the RBWG candidate model and the 25 other DAT 
candidates with error bars indicating +/- two standard deviations. 
 
performance pair ( ).SpSe,  Finally, we can compare the RBWG model against all the other 
prediction models with the singular statistic .AUC  In Fig. 7 we show the difference between the 
RBWG model AUC  and the AUC  of the other models. The error bars on the differences are 
two standard deviations of the AUC estimate that accounts for the correlations generated by 
testing the models on the same data: 

( ) ( ) ( ).,AUC,AUCcov2AUCvarAUCvar

)AUC(AUC

rRBWG

STERR

rRBWGrRBWG

rRBWG

−+=

−
  Eq. 19 

Ignoring multiplicity issues, the RBWG candidate is statistically larger than several other 
models, statistically smaller than two, and undistinguishable from about half. 
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Supplementary Document 3:  
 
Possible explanation of the superior performance of DAT33’s model on endpoint A 
 
One interesting observation was the higher accuracy measured for the UIUC2 classifier on 
endpoint A relative to other approaches.  Endpoint A was an interesting case because of its high 
batch variability. The UIUC2 group was testing the performance of the k-Top Scoring Pairs 
approach (Tan et al. 2005).  This approach focuses on identifying pairs of markers that yield 
simple classifier variables of the form: If A > B, then class 1, else class 2, where A and B 
represent, for example, the expression of two genes.  These rules result in a ratio-based data 
transformation to binary variables.  A primary advantage of this transformation is that the 
accuracy of the classifier becomes independent of monotonic data normalization (e.g. quantile 
or mean normalization of expression).  The method also maximizes the size of the relative 
expression reversal amongst the most accurate pairs.  Thus, the method was developed in 
order to identify classifiers that are robust to variance due to batch effects and differences 
across platforms.  In previous studies, this method was found to be accurate even when tested 
using a different measurement platform than that on which it was trained (Xu et al. 2005; Price 
et al. 2007).  A potential weakness of the TSP approach, reflected in its average score in Table 
2, is that the parsimony of the classifiers considered means that on complex phenotypes there 
can sometimes be no TSPs that have good accuracy even on the training set, in which case it 
can be identified as not being a correct candidate model choice for these situations.  For 
Endpoint A, the question arises: is the higher performance observed on Endpoint A an accurate 
assessment or is it an outlier observed by chance?   To really settle this question, additional 
results need to be repeated on multiple data sets with similar batch variability 
properties.  However, the results observed herein is an intriguing clue that ratio-based data 
transformation is beneficial for identifying classifiers that are robust to high batch variance.   
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Purpose of This Research Plan 
 
The MicroArray Quality Control (MAQC) project is already one of the most ambitious and 
comprehensive studies to date on microarray quality control, addressing such issues as cross-
laboratory and cross-platform comparisons and performance evaluation of data analysis methods 
for (1) the identification of differentially expressed genes (MAQC-I, i.e., Phase I) and (2) the 
development and validation of predictive models or classifiers (MAQC-II, i.e., Phase II). A 
consortium of many government, academic, and commercial participants has contributed and 
will continue to contribute substantial resources, time, and expertise to make this project a 
success. To achieve the intended, long-term benefits of the MAQC project, proper management 
and control is needed before the distribution of data sets or experimental processing of samples 
begins. 

The validity of the MAQC project can be seriously compromised if all participants of the 
project do not operate under the same set of rules and guidelines. We recognize that the number 
of MAQC participants has been growing rapidly, and recent teleconferences and face-to-face 
meetings have demonstrated that the level of shared understanding between participants is 
variable. This Research Plan has been prepared to ensure a common basis of understanding for 
participants of the MAQC project. It summarizes the background of the MAQC project and 
MAQC-I results and outlines the scope of MAQC-II toward establishing consensus on the 
appropriate approaches to development and validation of predictive models based on microarray 
gene expression profiles. 

This Research Plan is an integral part of the MAQC Confidential Information Disclosure 
and Transfer Agreement (CIDTA). MAQC participants are expected to carefully read this 
document and the attached SOP on Data Analysis by the MAQC Regulatory Biostatistics 
Working Group, and closely follow the guidelines outlined in the Research Plan and the SOP. 

 

 
 

Disclaimer 
 
The US Food and Drug Administration (FDA) has solicited DNA microarray gene expression 
data sets as well as proposals to analyze these data sets in order to evaluate the impact of 
different analysis protocols on the selection of genes and their associated predictive models for 
biomarker pattern development (Federal Register, 71(77), 20707-8, April 21, 2006; available at 
http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/docs/FederalRegister_MAQC_
FollowUp.pdf). The MAQC project is being coordinated by the FDA, but there are no regulatory 
rights conveyed to anyone by the participation of FDA personnel in this project. Although FDA 
personnel are involved in the MAQC project, the views expressed here in this MAQC-II 
Research Plan are not FDA guidance and do not necessarily represent FDA policy. 
 Participation in the MAQC project is completely voluntary. No fund whatsoever is 
available from the MAQC to any participant. Participants agree to cover all their own costs as a 
result of voluntary involvement in the MAQC project. 

 

Nature Biotechnology: doi: 10.1038/nbt.1665



   

MAQC-II Main Paper: Supplementary Information  62/98 
 

Abbreviations 
 
MAQC:  MicroArray Quality Control project 
MAQC-I: Phase I of MAQC project (identification of differentially expressed genes) 
MAQC-II:  Phase II of MAQC project (development and validation of predictive models/classifiers) 
WG:  Working Group 
CWG:  Clinical Working Group of MAQC-II 
RBWG:  Regulatory Biostatistics Working Group of MAQC-II 
TGxWG:  Toxicogenomics Working Group of MAQC-II 
TitrationWG:  Titration Working Group of MAQC-II 
A:  RNA sample A (“Apples”), Startagene’s Universal Human Reference RNA 
B:  RNA sample B (“Bananas”), Ambion’s Human Brain Reference RNA 
C:  3A:1B mixture (titration) 
D:  1A:3B mixture (titration) 
DEG: Differentially expressed gene 
CIDTA:  Confidential information disclosure and transfer agreement 
IRB: Institutional Review Board 
SOP:  Standard operating procedure 
FDA:  US Food and Drug Administration 
CBER:  Center for Biologics Evaluation and Research, FDA 
CDER:  Center for Drug Evaluation and Research, FDA 
CDRH:  Center for Devices and Radiological Health, FDA 
CFSAN: Center for Food Safety and Applied Nutrition, FDA 
CVM: Center for Veterinary Medicine, FDA 
NCTR:  National Center for Toxicological Research, FDA 

 
List of Tables 

 
Table 1. Coordinators of the four MAQC-II Working Groups 
Table 2. Summary of clinical data sets being considered for MAQC-II 
Table 3. Summary of toxicogenomics data sets for MAQC-II 
Table 4. Summary of titration data sets for MAQC-II 
Table 5. Populating the matrix of performance metrics 
Table 6. Platform providers pledged support to MAQC-II 
Table 7. Members of the MAQC-II Steering Committee 
 
 

List of Figures 
 
Figure 1. The two major types of applications of microarray technology 
Figure 2. The design of Phase I of the MAQC project 
Figure 3. An overview of the workflow of MAQC-II 
Figure 4. In addition to prediction accuracy, robustness and mechanistic relevance are  

desirable features for a predictive model 
Figure 5. Validating predictive models in three stages 
 

Nature Biotechnology: doi: 10.1038/nbt.1665



   

MAQC-II Main Paper: Supplementary Information  63/98 
 

Table of Contents 
 
1. MicroArray Quality Control (MAQC) Project................................................................................... 64 

1.1 Microarrays and FDA’s Critical Path Initiative......................................................................... 64 
1.2 MAQC Project in Response to FDA’s Critical Path Initiative .................................................. 64 
1.3 Two Phases of MAQC Project: MAQC-I (Gene Lists) and MAQC-II (Predictive Models) .... 65 
1.4 MAQC-I Results: Microarrays Are Reproducible and Reliable................................................ 66 
1.5 MAQC-I Debate on Microarray Data Analysis Continues........................................................ 67 
1.6 From MAQC-I to MAQC-II...................................................................................................... 68 

2. Objectives of MAQC-II ..................................................................................................................... 68 
2.1 Clinical Applications ................................................................................................................. 69 
2.2 Preclinical (Toxicogenomics) Applications .............................................................................. 69 

3. Design of MAQC-II ........................................................................................................................... 69 
3.1 Overview of MAQC-II Workflow............................................................................................. 69 
3.2 Four Working Groups................................................................................................................ 70 
3.3 Data Sets for Clinical, Toxicogenomics, and Titration Applications ........................................ 72 
3.4 Prediction and Classification Methods ...................................................................................... 75 
3.5 Criteria for Evaluating Model Performance .............................................................................. 75 
3.6 Three Stages of Performance Validation of Predictive Models ................................................ 76 
3.7 Matrix of Performance Metrics ................................................................................................. 77 

4. Participants ......................................................................................................................................... 77 
4.1 Data Providers ........................................................................................................................... 77 
4.2 Data Analysis Sites.................................................................................................................... 78 
4.3 Platform Providers..................................................................................................................... 78 
4.4 Reference Sites .......................................................................................................................... 79 
4.5 Including or Excluding a Data Set............................................................................................. 79 
4.6 Including or Excluding a Participant ......................................................................................... 79 

5. Participant’s Responsibilities ............................................................................................................. 79 
6. Confidentiality Terms for Accessing MAQC-II Data Sets ................................................................ 80 
7. MAQC Steering Committee............................................................................................................... 80 
8. MAQC-II Procedures ......................................................................................................................... 81 

8.1 Data Submission Procedures ..................................................................................................... 81 
8.2 Data Distribution Procedures..................................................................................................... 81 
8.3 Data Analysis Procedures.......................................................................................................... 82 
8.4 Conference Calls ....................................................................................................................... 82 
8.5 Face-to-face Meetings ............................................................................................................... 82 
8.6 Planning for Publication ............................................................................................................ 82 

9. Checklist of Requirements before MAQC-II Data Distribution ........................................................ 83 
10. Timeline ............................................................................................................................................. 83 
11. Web Sites ........................................................................................................................................... 83 
12. References .......................................................................................................................................... 84 
13. Appendix 1: RBWG SOP on Data Analysis ...................................................................................... 84 

 
 

Nature Biotechnology: doi: 10.1038/nbt.1665



   

MAQC-II Main Paper: Supplementary Information  64/98 
 

1. MicroArray Quality Control (MAQC) Project 

1.1 Microarrays and FDA’s Critical Path Initiative 

On March 16, 2004, the US Food and Drug Administration (FDA) released a report on 
“Innovation/Stagnation: Challenge and Opportunity on the Critical Path to New Medical 
Products”, addressing the recent slowdown in innovative medical products submitted to the FDA 
for approval. The report described the urgent need to modernize the medical product 
development process – the Critical Path from bench to bed side – so that the product 
development process will be more predictable and efficient. On March 16, 2006, HHS Secretary 
Mike Leavitt and FDA Commissioner Andrew von Eschenbach released the Critical Path 
Opportunities List and Report that provided concrete focus for public and private efforts and 
investments in new tools that could revolutionize medical product development. Among the 76 
opportunities in fields such as genomics and proteomics, imaging, and bioinformatics, 
“Biomarker qualification” and “Standards for microarray and proteomics-based identification of 
biomarkers” were cited as the top two opportunities. 

Microarray technology was identified by the FDA’s Critical Path Initiative 
(http://www.fda.gov/oc/initiatives/criticalpath/) as a key tool that holds “vast potential” for 
advancing medical product development and personalized medicine through the identification of 
biomarkers. However, a gap exists between technological levels in use today and those required 
for application during product development and regulatory decision making. For example, recent 
publications have raised concerns about the reliability of microarray technology because of the 
apparent lack of reproducibility between lists of genes (i.e., potential biomarkers) identified as 
differentially expressed from similar or identical study designs with different platforms or 
laboratories1, 2. In addition, the reliability and utility of classification models for the prediction of 
patient outcomes has been questioned in recent literature3-5. Moreover, a recent survey of 
publications of on the prediction of cancer outcomes based on microarrays revealed serious flaws 
in the statistical analysis of microarray data6. 

1.2 MAQC Project in Response to FDA’s Critical Path Initiative 

On February 11, 2005, in response to the FDA Critical Path Initiative, scientists at the FDA’s 
National Center for Toxicological Research (NCTR), Jefferson, Arkansas formally launched the 
MicroArray Quality Control (MAQC) project (http://edkb.fda.gov/MAQC/; FDA/NCTR 
research protocol number: E0720701; PI: Leming Shi) in order to address reliability concerns as 
well as other performance, standards, quality, and data analysis issues7. Phase I of the MAQC 
project (MAQC-I, from February 11, 2005 to September 8, 2006) focused on assessing technical 
reliability of microarray technology for the identification of differentially expressed genes 
between a pair of well-established reference RNA samples. MAQC-I involved 137 scientists 
from 51 organizations including the six FDA centers (CBER, CDER, CDRH, CFSAN, CVM, 
and NCTR), government agencies (the US Environmental Protection Agency, the National 
Institutes of Health, and the National Institute of Standards and Technology), manufacturers of 
microarray platforms and RNA samples, microarray service providers, academic laboratories, 
and other stakeholders. All MAQC participants freely donated their time and reagents for the 
completion of MAQC-I. Phase II of the MAQC project (MAQC-II) was officially launched on 
September 21, 2006 at the NCTR and another meeting was held in CDER on November 28-29, 
2006. MAQC-II focuses on the development and validation of predictive models or classifiers in 
clinical and preclinical (toxicogenomic) applications. The MAQC project has been listed as one 
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of the Critical Path Opportunities initiated by FDA during 2006 
(http://www.fda.gov/oc/initiatives/criticalpath/opportunities06.html). 

1.3 Two Phases of MAQC Project: MAQC-I (Gene Lists) and MAQC-II (Predictive 
Models) 

Microarray gene expression profiling is being used for a variety of applications, two of which are 
(1) understanding general expression differences in various biological populations, classes, 
states, or conditions, which typically leads to the identification of lists of differentially expressed 
genes (DEGs) that distinguish populations and classes, and (2) the development of predictive 
models or classifiers that accurately predict outcomes of an individual based on a gene 
expression profile. These two types of applications have important ramifications and distinctions. 
In the first, information about a population or differences between populations is inferred. In the 
second, something about an individual member of a population is inferred or predicted. Although 
signatures can be used to classify individuals (e.g., assign or associate the individual with a 
subtype of a particular disease), MAQC-II is primarily focused on prediction of health outcomes 
based on microarray measurement of biological samples. These can putatively be used to predict 
response to treatment regimens, patient prognosis, recurrence of disease, survival, etc. The two 
types of applications are being addressed in Phase I and Phase II of the MAQC project, i.e., 
MAQC-I and MAQC-II, respectively. 

 
Figure 1. The two major types of applications of microarray technology are being addressed in 
Phase I and Phase II of the MAQC project, i.e., MAQC-I and MAQC-II, respectively. 
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1.4 MAQC-I Results: Microarrays Are Reproducible and Reliable 
Gene expression data on four titration pools from two distinct, commercially available reference 
RNA samples (samples A and B, see Abbreviations on page 3) were generated at multiple test 
sites using a variety of microarray-based and alternative technology platforms. The resulting rich 
reference data set consists of over 1,300 microarray hybridizations, and additional measurements 
for over 1,000 genes with alternative technologies such as qPCR. The MAQC project observed 
high intraplatform reproducibility across test sites, as well as interplatform concordance in terms 
of genes identified as differentially expressed. Platforms with divergent approaches to the assay 
generated comparable results in terms of differential gene expression. In other words, the 
differential gene expression patterns reflected the same biology despite differences in platform 
technology. Similar results were observed from a realistic rat toxicogenomics experiment8, in 
support of the major findings from data generated from the reference RNA samples. 
 

 
 
Figure 2. The design of Phase I of the MAQC project for evaluating the technical performance of 
microarray platforms and data analysis methods in identifying differentially expressed genes. 
 

One important goal of the MAQC Phase I was to assess the best performance achievable 
with microarray technology under consistent experimental conditions so that future end users 
will have a benchmark to judge whether the quality of their microarray data is comparable. In 
doing so, procedural failures of a laboratory or operator may be identified and corrected before 
precious study samples are profiled. The commercial availability of the two reference RNA 
samples coupled with the large reference data sets would also allow for the objective evaluation 
of new array products, reagents, or protocols. 
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Several unique features set the MAQC project apart from previous cross-platform 
comparison studies: (1) the enthusiastic participation of the microarray community in an 
extraordinary team effort; (2) the scale of the MAQC data set with over 1,300 microarrays from 
more than 40 test sites and 20 microarray platforms; (3) the large number of additional gene 
expression measurements with alternative technology platforms; (4) the commercial availability 
to the community of the same batches of the two reference RNA samples used in the MAQC 
study for subsequent quality control, performance evaluations, and proficiency testing; (5) the 
extensive sequence-based mapping of probes across platforms; and (6) last but not least, the 
identification of statistical explanations for some misconceptions on the comparability of 
microarray results. 

Major findings of the first phase of the MAQC project were published in six research 
papers on the September 8, 2006 issue of Nature Biotechnology7-12. Also published in the same 
issue was an Editorial13 by Nature Biotechnology, a Foreword by Dr. Daniel Casciano (former 
FDA/NCTR Director) and Dr. Janet Woodcock (FDA Deputy Commissioner), “Empowering 
microarrays in the regulatory setting”14, three Commentaries from the FDA15, the EPA16, and 
Stanford University17, and a Glossary18. All the MAQC papers are freely available at Nature 
Biotechnology’s website (http://www.nature.com/nbt/focus/maqc/index.html). In addition, all the 
MAQC papers were published as a supplement to the Nature Publishing Group in October 2006 
and distributed to a wide readership. Data are available through GEO (series accession number: 
GSE5350), ArrayExpress (accession number: E-TABM-132), ArrayTrack 
(http://www.fda.gov/nctr/science/centers/toxicoinformatics/ArrayTrack/), and the MAQC 
website (http://edkb.fda.gov/MAQC/MainStudy/upload/). The MAQC project has attracted 
international attention as can be seen from the positive reporting by Cell19, Nature20, Science21, 
Nature Methods22, Analytical Chemistry23, and other scientific publications.  

1.5 MAQC-I Debate on Microarray Data Analysis Continues  

A major challenge to the microarray user is the existence of numerous options for analyzing the 
same data set, which lack adequate scientific vetting of their capabilities, implications, and 
limitations20. There is a pressing need to critically evaluate currently available methods with 
relevant and objective criteria. For example, reproducibility has seldom been, but in the future 
should be, used as a critical criterion to judge the performance of data analysis procedures. In 
addition, several differential gene expression profiling studies have demonstrated that the relative 
expression measures (i.e., difference in transcript abundance between sample types) are typically 
more consistent than the absolute gene expression levels. The MAQC data set is expected to be 
widely utilized by the community in order to promote and reach consensus on the appropriate 
methods for analyzing microarray data. 

Lists of differentially expressed genes selected solely by a statistical significance measure 
are irreproducible: The MAQC-I analyses demonstrated7, 8 that the apparent lack of 
reproducibility reported in previous studies using microarray assays1, 2 was likely caused, at least 
in part, by the common practice of ranking genes solely by a statistical significance measure, for 
example, P values derived from simple t-tests, and selecting differentially expressed genes with a 
stringent significance threshold, a result that is consistent with a previous report24. The gene lists 
in the MAQC study were much more concordant when fold change was used as the ranking 
criterion. In addition, widely used statistical methods such as ranking based on FDR values from 
SAM did not appear to improve interlaboratory or interplatform reproducibility compared to 
fold-change ranking. Importantly, non-reproducible gene lists could lead to inconsistent 

Nature Biotechnology: doi: 10.1038/nbt.1665



   

MAQC-II Main Paper: Supplementary Information  68/98 
 

biological interpretations, for example, in terms of enriched GO terms and pathways8. Fold-
change ranking combined with a less-stringent P-value cutoff was found to yield more 
reproducible signature gene lists7, 8. 

The effect of various data normalization methods on the stability of lists of differentially 
expressed gene is greatly reduced when fold change is used for gene selection: Data 
normalization was identified as a major factor for differences when comparing results and data 
interpretations performed by VGDS (Voluntary Genomic Data Submission) sponsors and FDA 
reviewers15. It should be noted that, although there are many options for normalizing microarray 
data, when lists of differentially expressed genes are identified by the ranking of fold change, the 
results are much less susceptible to the impact of normalization methods. In fact, global scaling 
methods (e.g., median- or mean-scaling) do not change the relative rank-order of genes based on 
fold change; they do, however, significantly impact gene ranking by P-value7, 8, 11.  

The MAQC results suggest that microarray data analysis for the identification of 
reproducible lists of differentially expressed genes does not need be as complicated and 
confusing as it has been practiced, and consensus on data analysis appears to be attainable. 
However, concerns have been raised by some in the microarray community about the MAQC 
recommendations on the identification of differentially expressed genes19, 25, 26 or on the MAQC 
project as a whole27, 28, highlighting the importance for the microarray community to continue 
the debate in order to reach consensus on microarray data analysis and quality control 
(http://www.esi-topics.com/nhp/2007/march-07-LemingShi.html).  

1.6 From MAQC-I to MAQC-II 

The MAQC Phase I (MAQC-I) has demonstrated the technical reliability of microarray 
technology in detecting differential gene expression. However, questions remain regarding the 
reliability of the technology in clinical applications such as for disease diagnostics or 
prognostics, and for tailoring treatments based on gene expression profiles3, 4 , 5, 29. To investigate 
the capabilities and limitations of microarrays in such practical applications, the MAQC Phase II 
(MAQC-II) has been launched to address technical and scientific issues involved in the 
development and validation of predictive models or classifiers. Invitation for participation in 
MAQC-II was announced in Federal Register, 71(77), 20707-8, April 21, 2006 (available at 
http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/docs/FederalRegister_MAQC_
FollowUp.pdf). Multiple data sets will be collected and distributed to participating organizations 
for independent analyses. The results will normally be evaluated in three different levels: within 
a single data set via cross-validation, validation across one or more independent data sets from 
studies with the same (or similar) study objectives, and validation with blinded “prospective” 
samples. It is anticipated that the MAQC project, through the community’s active participation, 
will foster development of “best practices” for the generation, analysis, and application of 
microarray data in the discovery, development, and review of FDA-regulated products. 
 

2. Objectives of MAQC-II  
The overall goal of MAQC-II is to comprehensively evaluate different approaches for the 
development and validation of predictive models or classifiers for clinical and preclinical 
(toxicogenomics) applications by applying the same set of approaches to a variety of data sets 
with diverse endpoints on which predictions are being developed.  
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2.1 Clinical Applications 
The primary objectives are to characterize approaches to prediction using DNA microarrays for 
potential diagnostic, prognostic or therapeutic applications, as well as assist the FDA in 
understanding the performance characteristics and limitations of multigene clinical outcome 
predictors using RNA from clinical specimens. The MAQC-II Clinical Working Group was 
formed to systematically examine these issues, with the understanding that individual academic 
or industry sites may not possess the resources to independently address each of them. All 
predictions pertain to an individual patient endpoint. 
1. Understand the behavior of various prediction rules and gene selection methods that may be 

applied to microarray data sets to produce clinical outcome predictors: (a) Examine the 
influence of the number of variables (probes or probe sets) on prediction accuracy and 
robustness of the prediction result (in cross-validation and in independent and “prospective” 
validation); (b) Examine the influence of prediction rules (algorithms) on prediction accuracy 
and the robustness of prediction results (in cross-validation and in independent validation); 
and (c) Examine robustness of prediction results in the face of increasing experimental and 
artificial noise. 

2. Identify and characterize the sources of variability in multi-gene prediction results including 
(a) Impact of tissue acquisition (biopsy method) and sample preparation; (b) Inter- and intra-
laboratory variation in prediction results (in replicate experiments on the same platform); and 
(c) Cross-platform performance of prediction results (in replicate experiments on different 
platforms).  

2.2 Preclinical (Toxicogenomics) Applications 
A primary goal is to assess the reliability of models for the prediction of toxicity of new 
chemicals based on microarray gene expression profiling. The entity to be predicted is the 
toxicological endpoint (e.g., the presence or absence of liver toxicity) for a chemical, and usually 
not for an individual animal. Note that in Clinical Applications, the entity to be predicted is 
usually outcome of a subject (patient). 
 

3. Design of MAQC-II  

3.1 Overview of MAQC-II Workflow 
To investigate the capabilities and limitations of microarray technology in such practical 
applications, the MAQC Phase II (MAQC-II) has been launched to address technical and 
scientific issues involved in the development and validation of predictive models and classifiers 
(Figure 3). Multiple data sets will be collected and distributed (subject to Confidential 
Information Disclosure and Transfer Agreements) to participating organizations for independent 
analyses with available methodologies. The resulting models or analysis methods will be 
evaluated at three different levels: within a single data set via cross-validation, validation across 
independent data sets from studies with the same study objectives, and “prospective” validation 
with data from “prospective” samples. In addition, there may be related studies that are 
performed as pilot studies or to explore a specialized topic of general interest to the MAQC 
participants.  

Nature Biotechnology: doi: 10.1038/nbt.1665



   

MAQC-II Main Paper: Supplementary Information  70/98 
 

3.2 Four Working Groups 
1. The Clinical Working Group (CWG) will focus on data sets related to clinical 

applications. 
2. The Toxicogenomics Working Group (TGxWG) will focus on data sets related to 

toxicogenomic applications. 
3. The Titrations Working Group (TitrationWG) will focus on data sets from MAQC 

titration samples (including the MAQC-I Pilot II data from 13 titration mixtures run by 
four platforms). 

4. The Regulatory Biostatistics Working Group (RBWG) will provide recommendations to 
MAQC-II CWG and TGxWG on the process and criteria for evaluating the performance 
of predictive models and classifiers.  

 
If you are interested in contributing to a particular WG, please contact the coordinators of the 
corresponding WG listed in Table 1, and notify Leming Shi (leming.shi@fda.hhs.gov) to 
ensure that you will be included in the MAQC mailing list. Leming Shi will coordinate the 
overall activities of the entire MAQC-II project. 

 
 

 
 
Figure 3a. A simplified overview of the workflow of MAQC-II on the development and 
validation of predictive models. 
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Figure 3b. A more detailed overview of the workflow of MAQC-II on the development and 
validation of predictive models. (Courtesy of Dr. Wendell Jones, Expression Analysis, Inc.) 
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Table 1. Coordinators of the four MAQC-II Working Groups 
Working Group Coordinator E-mail 

Clinical WG (CWG) 
Uwe Scherf 
Wendell D. Jones 
Lajos Pusztai 

uwe.scherf@fda.hhs.gov 
wjones@expressionanalysis.com 
lpusztai@mdanderson.org 

Toxicogenomics WG 
(TGxWG) 

Federico M. Goodsaid 
David J. Dix 

federico.goodsaid@fda.hhs.gov 
dix.david@epa.gov 

MAQC Titrations WG 
(TitrationWG) 

Richard Shippy 
Roderick V. Jensen 
Russell D. Wolfinger 

richard.shippy@ge.com 
roderick.jensen@umb.edu 
russ.wolfinger@sas.com 

Regulatory Biostatistics 
WG (RBWG) 

Gregory Campbell 
Lakshmi Vishnuvajjala 
Timothy S. Davison 

greg.campbell@fda.hhs.gov 
lakshmi.vishnuvajjala@fda.hhs.gov 
tdavison@asuragen.com 

MAQC Coordinator Leming Shi leming.shi@fda.hhs.gov 

 
 

3.3 Data Sets for Clinical, Toxicogenomics, and Titration Applications 
Data sets are being identified for the purposes of evaluating 

a) the performance of predictive models and classifiers, and  
b) the performance of different approaches and methodologies for algorithms commonly 

used in the development of predictive models and classifiers. 
 
Data sets that were initially nominated early in the process were discussed during the 6th MAQC 
face-to-face meeting in Washington, DC and Silver Spring, MD, November 28-29, 2006; 
meeting agenda and summary are available at the MAQC web site: 
http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/docs/MAQC6_Nov-28and29-2006_Summary.pdf. 
New data sets may continue to be identified for the purposes of effectively conducting the three 
stages of validation of predictive models and classifiers (see Section 3.6). 
 
1. Data Sets for Clinical Working Group: Four diseases, namely breast cancer (BR), multiple 

myeloma (MM), acute lymphoblastic leukemia (ALL), and neuroblastoma (NB), are being 
considered for more detailed examination (esp. “prospective” performance) for predictive 
modeling using microarray data in MAQC-II. The clinical data sets that were discussed 
during the 6th MAQC meeting or were recently identified for use by the CWG are 
summarized in Table 2. Additional data sets that are useful for MAQC-II may still be 
considered during the course of the MAQC-II. Most clinical data sets can be used for 
addressing different types of clinical applications: disease subtype classification, treatment 
outcome, response to therapy, and disease prognosis. These clinical endpoints are examples 
of “dependent variables” that can be predicted by the predictive models or classifiers. The 
CWG is responsible for finalizing the diseases and related outcomes and the corresponding 
data sets that will be analyzed by MAQC-II. All data will be reviewed for quality of sample 
collection and processing consistency, and quality of microarray and clinical data. 
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Table 2. Summary of clinical data sets being considered for MAQC-II 

Data Source Clinical 
Applications 

Number 
of 

Samples 

Additional 
Samples Contact 

Breast Cancer 
MD Anderson Cancer 
Center 

Treatment outcome 
(Subtype classification) 133 Yes Lajos Pusztai 

lpusztai@mdanderson.org 
Jules Bordet Instituet 
(Brussels) 

Prognosis 
Treatment outcome 

198+ 
61 Yes Christos Sotiriou 

christos.sotiriou@bordet.be 
University of North 
Carolina Subtype classification 131   

NKI/Rosetta Prognosis 97   
Multiple Myeloma 

University of Arkansas for 
Medical Sciences (UAMS) 

Subtype classification; 
Prognosis; 
Treatment outcome 

565 Yes 
(hundreds) 

John D. Shaughnessy, Jr. 
shaughnessyjohn@uams.edu 

Millennium 
Subtype classification; 
Treatment outcome; 
(Prognosis) 

264  George J. Mulligan 
george.mulligan@mpi.com 

University of Heidelberg Prognosis 
(Subtype classification) 112 Yes Dirk Hose 

dirk.hose@med.uni-heidelberg.de 

University of Milan Subtype classification 102 Yes Antonino Neri 
neri.a@policlinico.mi.it 

Acute Lymphoblastic Leukemia (ALL) 

St. Jude Children’s 
Research Hospital 

Treatment outcome; 
Subtype classification; 
(Prognosis) 

98 
(360) Yes Meyling H. Cheok 

meyling.cheok@stjude.org 

Erasmus University 
Medical Center 

Treatment outcome; 
Subtype classification; 
(Prognosis) 

173 Yes  

Neuroblastoma 

University of Cologne Prognosis 251 Yes (>200) André Oberthuer 
andre.oberthuer@uk-koeln.de 

 
 
2. Data Sets for Toxicogenomics Working Group: The goal of the TGx WG is to develop and 

compare methods for deriving genomic signatures from gene expression data that diagnose or 
predict toxicity of compounds in animal models. It should be noted that the individual 
entities that will be predicted or classified are individual chemicals, not individual animals. 
Except for a few data sets, the initially nominated data sets were determined to be unsuitable 
for developing predictive classifiers due to the very limited number of compounds involved 
in a data set (Table 3). However, some of these small data sets might be useful during the 
validation process. Iconix nominated the largest TGx data sets for three distinct applications 
based on microarray gene expression profiles: (1) predicting non-genotoxic liver carcinogens 
from non-carcinogens; (2) predicting liver toxicants from non-toxicants; and (3) predicting 
kidney toxicants from non-toxicants. New data (and/or samples) from EPA’s on-going 
ToxCast program and Hamner’s mouse lung tumor study could serve as “prospective” 
validation.  
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Table 3. Summary of toxicogenomics data sets for MAQC-II 

Data Source TGx Applications Number of 
Chemicals 

Additional 
Chemicals Contact 

Liver Carcinogenicity 

Iconix Non-genotoxic 
hepatocarcinogenicity 147  Mark Fielden 

mfielden@iconixbiosciences.com 

EPA Non-genotoxic 
hepatocarcinogenicity ? Yes David J. Dix 

dix.david@epa.gov 
Lung Carcinogenicity (Mice) 

Hamner Non-genotoxic chemical-
induced hepatocarcinogenicity 13 5 Russell S. Thomas 

rthomas@thehamner.org 
Liver Toxicity 

Iconix Liver toxicity 22  Mark Fielden 
mfielden@iconixbiosciences.com 

EPA Liver toxicity 5+2+12 Yes David J. Dix 
dix.david@epa.gov 

NIEHS/Cogenics Liver toxicity 8  Richard S. Paules 
paules@niehs.nih.gov 

NIEHS/Cogenics Acetaminophen treatment 1  Edward K. Lobenhofer  
elobenhofer@icoria.com 

Kidney Toxicity 

Iconix Kidney toxicity 75  Mark Fielden 
mfielden@iconixbiosciences.com 

Miscellaneous  

MGH Estrogenicity 6  Toshi Shioda 
shioda@helix.mgh.harvard.edu 

 
3. Data Sets for Titration Working Group: The Titration Working Group’s main objective is 

to provide a “positive control” study for evaluating the performance of classifiers by using 
the titration data sets generated by the MAQC-I main study (A, B, C, and D samples) and the 
MAQC-I Pilot II Titration with 13 titration mixtures from defined ratios of A and B (Table 4, 
non-public). Affymetrix, GE Healthcare, and Illumina submitted Pilot II titration data to 
MAQC. If needed, additional titration samples may be created and profiled.  

Table 4. Summary of titration data sets for MAQC-II 
No. Sample B (%) Sample A (%) Number of Replicates 
1 100 0 6 
2 99.5 0.5 3 (or 6) 
3 99 1 3 
4 95 5 3 
5 90 10 3 
6 75 25 3 
7 50 50 3 
8 25 75 3 
9 10 90 3 
10 5 95 3 
11 1 99 3 
12 0.5 99.5 3 (or 6) 
13 0 100 6 

Total number of arrays per site (manufacturer) 45 (or 51) 
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3.4 Prediction and Classification Methods 
Numerous algorithms (methods) have been reported in the literature for developing prediction 
models and classifiers based on microarray gene expression data. The Regulatory Biostatistics 
WG (RBWG) will conduct a literature survey (or participant survey) and suggest more 
commonly (and possibly appropriately) used methods to be evaluated with the MAQC-II data 
sets. Timothy Davison (Asuragen) has been compiling a list of modeling and classification 
methods and procedures for evaluation; this list could be used as a starting point for investigators 
and the RBWG to understand the performance characteristics of different methods for MAQC-II 
evaluation.  

3.5 Criteria for Evaluating Model Performance 
 The Regulatory Biostatistics WG will be recommending a set of criteria for the objective 
evaluation of the performance of predictive models and classifiers. Although prediction 
accuracy, sensitivity and specificity should be the main criterion for evaluating the performance, 
the robustness and mechanistic relevance of the model/classifier are also important additional 
considerations (Figure 4). That is, when the 
prediction accuracy (sensitivity and specificity) is 
comparable, a model/classifier that offers a robust 
and reproducible outcome across data sets, is less 
sensitive to sporadic errors, or offers new insights 
to the biological problems should be given a higher 
priority. It is anticipated that a better understanding 
of the capabilities and limitations of microarrays in 
clinical and toxicogenomic applications could be 
reached and recommendations on the development 
and validation of predictive classifiers (signatures) 
may be put forward through MAQC-II.  
       Figure 4. In addition to prediction accuracy,  

robustness and mechanistic relevance are  
desirable features for a predictive model. 

 
During the 6th MAQC meeting, there were discussions on relevant performance 

evaluation criteria. For example, Richard Simon (NIH/NCI) highlighted some “guiding 
principles” on the development and evaluation of predictive models and classifiers and suggested 
that the validation should NOT involve (1) measuring overlap of gene sets used in classifiers 
developed from independent data; (2) statistical significance of individual gene expression levels 
or summary signatures in multivariate analysis; (3) confirmation of gene expression 
measurements on other platforms; and (4) demonstrating that the model/classifier or any of its 
components are “validated biomarkers of disease status”. Instead, valid metrics for the validation 
of predictive models or classifiers should include (1) predictive accuracy; (2) reproducibility of 
outcome for individual patients; and (3) medical utility. 

Gene Pennello (FDA/CDRH) stated that the value of MAQC-II should not be in 
evaluating whether particular prediction rules are better than others, per se, but in evaluating if 
strategies for validating a prediction rule are better than others. Validation strategies that work 
can be used to support approval of genomic signatures, and validation strategies that are least 
burdensome can shorten time to market. Strategies for evaluating models or classifiers should 
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include performance validation, algorithm stability, and reproducibility. The evaluation of 
strategies for developing models or classifiers is useful to the FDA because (1) the dissemination 
of good principles for models or classifier development can lead to the decreased likelihood of 
an approvable, but flawed model/classifier; and (2) the proper assessment of error rates is needed 
to properly determine the sample size for a Phase III or pivotal trial. 

The RBWG SOP on data analysis includes suggested criteria for evaluating performance 
of predictive models and classifiers (Appendix 1: RBWG_SOP_DataAnalysis.doc). 

3.6 Three Stages of Performance Validation of Predictive Models 
An important objective of MAQC-II is to reach consensus on procedures for performance 
evaluation of different models or classifiers. To adequately evaluate the performance, we need to 
subject a predictive model or classifier to three stages of validation (Figure 5):  
1. Stage I - Initial Discovery (Internal Validation within One Data Set): A predictive model 

or classifier will typically be developed based on a single data set generated from a single 
institution. The performance may be assessed in an “internal validation” process such as a 
leave-n-out cross-validation using the same single data set. 

2. Stage II - Independent Validation (Cross-study/Data Set Validation): Prediction models 
or classifiers will be developed from one or more data sets and a separate data set will be 
used as an independent test data set for validating the performance of the models or 
classifiers trained on the initial data sets. The 
data sets should share the same clinical 
design, share common data characteristics, 
and be generated independently from multiple 
institutions or from the same institution but 
from different time periods or platforms. 

3. Stage III - Clinical Utility: The clinical 
utility of a prediction model or classifier is 
validated (or challenged) by comparing its 
performance against traditional (e.g., non-
transcriptomic profiling) clinical practices, 
preferably based on new data from 
“prospective” studies. 

       Figure 5. Validating predictive models in three stages 
 

It is anticipated that the number of predictive models or classifiers that “survive” the 
three stages of validation will decrease dramatically as the stringency of validation increases 
from Stage I to Stage III validation. It is likely that some methods will be found more prone to 
over-fitting, thus limiting their practical utilities because of the lack of extrapolation power to 
new samples or new studies. Most of the same set of criteria defined in “Section 3.5: Criteria for 
Evaluating Model Performance” will be applied in each of the three stages to validate/evaluate 
the performance of predictive models/classifiers. 

Data sets to be used in MAQC-II analysis should serve for the purposes of the three 
stages of validation for any given clinical or toxicogenomic application endpoint. MAQC-II may 
continue to seek additional data sets if there is a gap for conducting the three stages of validation. 
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3.7 Matrix of Performance Metrics 
It is expected that a matrix of performance metrics (Table 5) will be created by applying various 
data analysis methods to different types of data sets and applications (toxicogenomic and 
clinical) under the three stages of the validation process (Section 3.6). The RBWG is expected to 
finalize a list of performance metrics to objectively assess model (method) performance. For 
meaningful meta-analysis of the matrix of performance metrics, each data analysis group will 
apply its analysis methods across different data sets and record the corresponding performance 
metrics. 

An important goal of MAQC-II data analysis is to populate the matrix of performance 
metrics by applying various data analysis methods to multiple data sets in different stages of 
validation, and calculating different performance metrics for each method (model). Meta-
analysis of the resulting performance matrix will provide important information on the 
appropriate procedures for the development and validation of predictive models based on 
microarray gene expression profiles. 

 
Table 5. Populating the matrix of performance metrics 

  Performance Metrics 

  1 2 3 . . . m 

1 PM1,1 PM1,2 PM1,3 . . . PM1,m 

2 PM2,1 PM2,2 PM2,3 . . . PM2,m 

3 PM3,1 PM3,2 PM3,3 . . . PM3,m 
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n PMn,1 PMn,2 PMn,3 . . . PMn,m 
 

4. Participants 
 
Participation in MAQC-II is voluntary, and each participant is expected to cover the costs 
associated with participating in the MAQC-II project. There is no “MAQC fund” to provide for 
any participant. Each participant agrees to the conditions and terms set in this Research Plan and 
the Confidential Information Disclosure and Transfer Agreement (CIDTA). 

4.1 Data Providers 
Data providers are organizations that provide either publicly available data and/or Confidential 
Information to the MAQC Data Warehouse. Such Confidential Information may be microarray 
data, clinical information, or both. Current data providers are listed in Tables 2 and 3. Additional 
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data providers may be identified and invited during the MAQC-II project if needed. Furthermore, 
some of the current data providers may acquire and provide additional biological samples for 
“prospective” validation of models/classifiers. 

4.2 Data Analysis Sites 
Data analysis sites are organizations that receive general information, curated public data, and/or 
Confidential Information from MAQC Data Warehouse and conduct data analysis under the 
scope of the MAQC-II project. Data analysis sites should report analysis results back to 
MAQC-II. 

4.3 Platform Providers 
MAQC-II may generate additional microarray data sets using biological samples from on-going 
“prospective” studies so that Stage III validation (Section 3.6) may be conducted. In addition, 
other pilot studies and specialized studies relevant to the goals of MAQC-II may be designed and 
executed. Microarray manufactures (Table 6) including Affymetrix, Agilent, Eppendorf, 
Illumina, PhalanxBiotech, and Telechem agreed in principle to supply substantial numbers of 
microarrays for the MAQC-II validation and “prospective” efforts as well as related studies. 
Separately, ABI, Gene Express, Panomics, and SuperArray have also pledged support with gene 
expression platforms other than microarrays. MAQC-II will decide, as a group, what additional 
data will be generated and on what platforms as we move forward. 

It may not be feasible to process samples and perform testing/validation on multiple 
platforms for an individual study that was initially trained on one platform, especially for the 
clinical studies. However, if there is success of having accurate, reproducible (i.e., more than one 
laboratory) results from a “prospectively” validated model/classifiers on one particular 
microarray platform with a separate platform for a different study (possibly run in parallel), then 
this would be considered in harmony with the overall MAQC effort. In addition, it may be 
possible to examine the robustness of a model/classifier designed on one platform when it is 
“ported” to another, given proper technological and methodological considerations. This 
examination may be appropriate for a pilot or specialized study. 

A solid proposal is needed for the array and alternative platform manufacturers so that 
they can adequately plan and solicit funds for resources related to the MAQC-II efforts.  

 
Table 6. Platform providers pledged support to MAQC-II 

No. Provider Contact E-mail 
1 Affymetrix Janet A. Warrington janet_warrington@affymetrix.com 
2 Agilent Paul K. Wolber paul_wolber@agilent.com 
3 Applied Biosystems Raymond R. Samaha raymond.samaha@appliedbiosystems.com 
4 Eppendorf Array Tech. Francoise de Longueville delongueville.f@eppendorf.be 
5 Gene Express James C. Willey james.willey2@utoledo.edu 
6 Illumina Shawn C. Baker scbaker@illumina.com 
7 Panomics Yuling Luo yluo@panomics.com 
8 PhalanxBiotech Charles Ma charlesma@phalanxbiotech.com 
9 SuperArray Jingping Yang jpyang@superarray.net 

10 TeleChem ArrayIt Paul K. Haje paul@arrayit.com 
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4.4 Reference Sites 
Reference sites will be identified in the future to process biological samples from data providers 
in actual microarray experiments using microarrays (and reagents) from platform providers for 
“prospective” related studies identified by the MAQC-II. 

4.5 Including or Excluding a Data Set  
The decision to include a new data set after March 31, 2007 will be determined by the MAQC-II 
Steering Committee (Section 7); only data sets that significantly help achieve the overall 
objectives of the MAQC-II should be considered for inclusion. The Steering Committee may 
also decide to exclude a data set from MAQC-II analysis if the data set is found to be of limited 
use for the MAQC-II project. 

4.6 Including or Excluding a Participant  
The decision to include a new participant after March 31, 2007 will be determined by the 
Steering Committee. If approved, the Steering Committee (Section 7) and coordinators of the 
corresponding Working Groups will ensure that the new participant is adequately briefed and 
agrees to the conditions of the MAQC-II Research Plan and related documents. Participants who 
do not follow the MAQC-II Research Plan, as determined by the Steering Committee, may be 
excluded from future MAQC activities. 
 

5. Participant’s Responsibilities 
 

1. Participant agrees to follow the general principles set in this Research Plan document and the 
RBWG SOP. 

2. Participant agrees to the Confidentiality Terms (Section 6) before accessing the Confidential 
Information portion of the MAQC data sets, as defined in the MAQC CIDTA document.  

3. Participant agrees to the publication and public deposition of the data sets and related 
analysis results at the time of acceptance of MAQC-II manuscript(s). 

4. Data Provider agrees to submit data set(s) to the MAQC Data Warehouse as son as possible 
and provide sufficient background information to participants to understand the data set(s). 

5. Data analysis site agrees to report analysis results to the MAQC in a timely fashion during 
face-to-face meetings, conference calls, and e-mail exchanges. Data analysis site also agrees 
to actively participate in conference call discussions and manuscripts preparation. 

6. Participant agrees to cover the costs as a result of her/his involvement in MAQC-II. No fund 
is provided to any participant. 

7. Each platform provider will provide consistent lots of arrays and kits to reference sites along 
with a standardized protocol on the generation of the “prospective” data, when needed. 

8. Each platform provider will help ensure performance capabilities of the selected reference 
sites by providing arrays and reagents, and potential training. 

9. Each reference site will be expected to be proficient in and execute the standardized protocol 
(with appropriate reagents and kits) to ensure competency and consistency with the protocol. 

10. Each reference site should submit data to FDA/NCTR within 5 weeks of receiving the RNA. 
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6. Confidentiality Terms for Accessing MAQC-II Data Sets 
1. Participant is required to sign and abide by the Confidential Information Disclosure and 

Transfer Agreement (CIDTA) with Data Provider before the data provider’s data in the 
MAQC Data Warehouse can be made available to the participant. 

2. Participant should not disseminate the MAQC-II data sets or results to others not bound to 
the respective CIDTA. 

3. Prior to acceptance for publication of MAQC-II manuscript(s), public presentation or 
publication of the Confidential Information portion of the MAQC-II data, as defined in the 
MAQC CIDTA document, and results derived specifically from the Confidential Information 
portion of the MAQC-II data is prohibited.  

 

7. MAQC Steering Committee 

Whenever possible, consensus from the entire MAQC consortium will be sought before any 
important decision is made about the MAQC project. However, there may be situations when it 
becomes unfeasible to reach consensus among all members of the MAQC-II project. The MAQC 
Steering Committee (Table 7) has been established for resolving any remaining issues not 
addressed in this Research Plan document or whenever consortium consensus is not feasible. The 
Steering Committee is responsible for ensuring the delivery of the project outcomes. The 
Steering Committee consists of coordinators of the four Working Groups (Table 1) and 
representatives from US federal government agencies. It will be the responsibility of all members 
of the Steering Committee to abstain from participating in a particular activity of the Steering 
Committee if such participation would create a conflict of interest. Members of the MAQC may 
reasonably request that individual Steering Committee members abstain from participating in a 
particular decision-making. 
 

Table 7. Members of the MAQC-II Steering Committee 
No. Name E-mail Organization 
1 Gregory Campbell greg.campbell@fda.hhs.gov FDA/CDRH 
2 Timothy S. Davison tdavison@asuragen.com Asuragen 
3 David J. Dix dix.david@epa.gov EPA 
4 Felix W. Frueh felix.frueh@fda.hhs.gov FDA/CDER 
5 James C. Fuscoe james.fuscoe@fda.hhs.gov FDA/NCTR 
6 Federico M. Goodsaid federico.goodsaid@fda.hhs.gov FDA/CDER 
7 Roderick V. Jensen roderick.jensen@umb.edu Univ. Mass. Boston  
8 Wendell D. Jones wjones@expressionanalysis.com Expression Analysis 
9 Raj K. Puri raj.puri@fda.hhs.gov FDA/CBER 

10 Lajos Pusztai lpusztai@mdanderson.org MD Anderson 
11 Uwe Scherf uwe.scherf@fda.hhs.gov FDA/CDRH 
12 Leming Shi leming.shi@fda.hhs.gov FDA/NCTR 
13 Richard Shippy richard.shippy@ge.com GE Healthcare 
14 Weida Tong weida.tong@fda.hhs.gov FDA/NCTR 
15 Lakshmi R. Vishnuvajjala lakshmi.vishnuvajjala@fda.hhs.gov FDA/CDRH 
16 Russell D. Wolfinger russ.wolfinger@sas.com SAS Institute 
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8. MAQC-II Procedures 

8.1 Data Submission Procedures 
1. For FDA IRB’s record, Data Provider should sign a “banking” form addressed to Leming 

Shi, and contains the following language: 
“I am submitting the following data for inclusion into the MAQC project:  
(list specific data to be deposited) 
I am confirming that the above data were not collected specifically for the MAQC project. 
These data were collected under appropriate Institutional Review Board approval by our 
institution. Individuals agreed to have their data banked for further research, including 
genetic research. Confirmation of this consent for banking is available upon request. 
The data are coded so that the identity of the individuals is protected. Under no 
circumstances will FDA/NCTR or any MAQC recipient of these data be given access to either 
the key or to any information that may enable them to decipher the code.” 

2. Data Provider should submit its data set (microarray data and demographic/clinical 
information) to Leming Shi at the FDA/NCTR as part of the MAQC Data Warehouse in a 
timely manner upon request. 

3. The microarray data should be submitted in a raw (original) data format; for example CEL 
file format for Affymetrix platforms and scanner FE output format in tab-delimited ASCII 
format for Agilent format. 

4. Demographic/clinical information should be submitted in a separate Excel spreadsheet that 
links patient information to the microarray data file name unambiguously. 

5. Data Provider is encouraged to provide quality assessment information to MAQC Data 
Warehouse, if available. 

6. As each data set is submitted to MAQC Data Warehouse, it will be reviewed by a team at 
FDA/NCTR for completeness, quality, and errors. No other participants will be given access 
to the raw data until the Data Distributions Procedures (Section 8.2) are followed. High-level 
quality views or summaries of data, for quality review purposes, may be distributed to 
MAQC members ahead of time as the particular WG or Steering Committee sees fit. 

7. Data should be submitted via FTP or in DVD to Leming Shi (contact information shown on 
page 1 of this Research Plan).  

8.2 Data Distribution Procedures 
1. If a participant (as a Data Recipient) is interested in analyzing a particular data set listed in 

Tables 2-4, s/he should contact the Data Provider directly. 
2. Data Recipient and Data Provider sign a bilateral Confidential Information Disclosure and 

Transfer Agreement (CIDTA). 
3. Data Provider sends a copy of the signed CIDTA by e-mail (in PDF format) or fax to Leming 

Shi (detailed contact information is listed on the cover page of this Research Plan). 
4. Data Recipient sends an e-mail to Leming Shi to clearly state that (1) s/he has signed the 

CIDTA and wants to access the data and (2) s/he has carefully read and agrees to the 
MAQC-II Research Plan and the attached SOP document. 

5. For FDA IRB’s record, Data Recipient should sign a “withdrawal” form addressed to Leming 
Shi, and contains the following language: 

“I confirm that I have received the following data from the MAQC project:  
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(list specific data/specimens to be withdrawn). 
I understand that under no circumstances will I be able to attain any identifying information 
about the individual data that I have received from the MAQC project. 
I acknowledge that I will use this research material only in accordance with the conditions 
stipulated by the MAQC project. Any additional use of this material will require an approval 
by the FDA IRB and, where appropriate, by an IRB at the recipient site.” 

6. Leming Shi notifies Data Recipient by e-mail (cc Data Provider) that the data for which s/he 
has signed the CIDTA are ready for access (instructions will be provided separately). 

7. Data Recipient calls Leming Shi (+1-870-543-7387) to get the FTP address and password. 
8. Data Recipient conducts data analysis in accordance with the MAQC-II Research Plan and 

submits analysis results to the MAQC in a timely manner for consideration of inclusion in 
manuscripts. There is no restriction on the types of analyses that may be performed by each 
Data Recipient, but the results will be reviewed by other members of the MAQC.  

9. Each Data Recipient accessing MAQC-II datasets must strictly fulfill its obligations of 
confidentiality as set forth in this Research Plan document and the CIDTA. 

10. MAQC-II data sets will be submitted to a public repository (e.g., GEO) at the time of 
manuscript submission, tentatively scheduled for March, 2008. 

8.3 Data Analysis Procedures 
Participants conduct data analysis in accordance with the MAQC-II Research Plan and report 
results to MAQC-II. There is no restriction on the types of analyses that may be performed by 
each participant. However, each participant should report his/her results in sufficient details so 
that other MAQC members will have enough information to judge the validity of the analysis 
results. A separate document on the strategies of data analysis has been developed by RBWG 
and is attached at the end of this document (Appendix 1: RBWG_SOP_DataAnalysis.doc). 

8.4 Conference Calls 
Biweekly conference call will be up for each WG, and conference calls for the entire MAQC will 
be set up when needed so that participants will be updated about the progress of the project, and 
new information and ideas are exchanged in a timely fashion. 

8.5 Face-to-face Meetings 
Analysis results of the MAQC-II data sets will be extensively discussed during face-to-face 
project meetings. The frequency of face-to-face meetings is roughly once every three to six 
months. The location and duration of the face-to-face meetings will be decided by the Steering 
Committee and announced to the entire MAQC at least one month before the meeting dates. 

8.6 Planning for Publication 
The decisions about the content of the manuscripts that derive from MAQC-II are of significant 
importance. It is the intent of the MAQC-II Steering Committee to produce one manuscript that 
summarizes the general findings of the MAQC-II study. It is expected that additional 
manuscripts will be generated that may address data set-specific questions (e.g., one manuscript 
for each disease area). All the manuscripts will be produced by the MAQC members. Manuscript 
team leaders will be those with the domain expertise for a disease area and those who have 
contributed a significant amount of confidential information (data sets and/or analysis results) to 
the MAQC-II. It has been suggested that a manuscript on array QC assessment may be 
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developed based on on-going effort on the identification of potential outlying arrays from each 
and every data set before predictive models are developed. A “methodological” manuscript may 
be planned. Authorship will be determined based on an individual’s actual contributions. 

9. Checklist of Requirements before MAQC-II Data Distribution 

1. Data Recipient is required to sign the Confidential Information Disclosure and Transfer 
Agreement (CIDTA) with data Provider. 

2. Participants will agree to the scope of the MAQC-II project and accept the responsibilities of 
participants outlined within the Research Plan document. 

3. Participants acknowledge familiarity with the contents of the MAQC-II Research Plan and 
the RBWG SOP on data analysis. 

10. Timeline 

1. September 21, 2006: Kickoff meeting at FDA/NCTR; 
2. November 28-29, 2006: Data set review and model performance evaluation criteria meeting 

at FDA/CDER; 
3. December 15, 2006: Data sets (raw data) submitted to FDA/NCTR; 
4. February 20, 2006: Non-confidential data sets distributed; 
5. March 22, 2007: Confidential Information Disclosure and Transfer Agreement (CIDTA) 

finalized and distributed to the entire MAQC-II mailing list of 290 people along with the 
Research Plan and RBWG SOP; Participants are expected to sign the CIDTA; 

6. March 31, 2007: Confidential data sets distributed to participants who signed the CITDA; 
7. May 24-25, 2007: The 7th face-to-face MAQC project meeting to be held at SAS Institute, 

Cary, North Carolina. Initial analysis results, data analysis strategies and questions to be 
discussed. Manuscripts topics to be proposed; 

8. June, 2007: Manuscript teams to be assembled; 
9. October/November, 2007: The 8th face-to-face MAQC project meeting on data analysis; 
10. March 31, 2008: Manuscripts submitted; 
11. September, 2008: MAQC-II results published; 
12. December, 2008: MAQC-II recommendations on the development and validation of 

predictive models (classifiers). 
 

11. Web Sites 
1. The MAQC (MicroArray Quality Control) Project: 

http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/index.htm 
2. MAQC-I results were published in the September 2006 issue of Nature Biotechnology: 

http://www.nature.com/nbt/focus/maqc/index.html  
3. FDA’s Critical Path Initiative: http://www.fda.gov/oc/initiatives/criticalpath/ 
4. Genomics at FDA: http://www.fda.gov/cder/genomics/ 
5. ArrayTrack: http://www.fda.gov/nctr/science/centers/toxicoinformatics/ArrayTrack/ 
6. ERCC: http://www.cstl.nist.gov/biotech/ERCC/testplan.htm 
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13. Appendix 1: RBWG SOP on Data Analysis 

The MAQC RBWG (Regulatory Biostatistics Working Group) prepared an SOP on data 
analysis, covering general procedures for developing predictive models/classifiers and criteria 
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for assessing the performance of the developed models/classifiers (Appendix 1: 
RBWG_SOP_DataAnalysis.doc). Data analysis sites should follow the SOP in the development 
and validation of predictive models. 
 

Nature Biotechnology: doi: 10.1038/nbt.1665



   

MAQC-II Main Paper: Supplementary Information  86/98 
 

Supplementary Document 5:  
 
 
Standard Operating Procedures (SOPs), Methods and Analysis for MAQC-II 
 

By the MAQC Regulatory Biostatistics Working Group (RBWG) 

March 22, 2007 
 
Address comments and questions regarding the SOP to the RBWG coordinators: 

Gregory Campbell (greg.campbell@fda.hhs.gov) 
Lakshmi Vishnuvajjala (lakshmi.vishnuvajjala@fda.hhs.gov) 
Timothy S. Davison (timothy.davison@almacgroup.com) 

and co-authors of the document: 
Gene Pennello (gene.pennello@fda.hhs.gov)  
Samir Lababidi (samir.lababidi@fda.hhs.gov) 
 
 
The overall objective of MAQC-II is to characterize approaches for development and 
validation of classifiers on DNA microarray data for the purpose of diagnostic, 
prognostic, or therapeutic application.  A specific regulatory focus for MAQC-II is to 
identify study designs and performance measures for the evaluation of microarray 
technology and processes for establishing choice of classifier algorithm, choice of 
validation strategy, choice of normalization method, and handling of missing data.  
 
The FDA has solicited gene expression datasets from DNA microarray studies as well as 
proposals to analyze these datasets in order to evaluate the impact of different analysis 
protocols on the selection of genes and their associated signatures for biomarker pattern 
development.  Although this project is being coordinated by FDA, there are no regulatory 
rights conferred to anyone by the participation of FDA personnel in this project.  
Although FDA personnel are involved in this project, the views expressed here in this 
document are not FDA guidance and do not necessarily represent FDA policy. 

 
 

1. Executive Summary  
For each of the datasets in MAQC-II, it is anticipated that there will be a number of 
Analysis Groups (AGs) that will each undertake the task of building classifiers.  Each 
Analysis Group (AG) will provide to the MAQC-II Regulatory Biostatistics Working 
Group (RBWG) a specific Statistical Analysis Plan (SAP) describing methodology for 
the development and validation of classifier(s).  It is strongly recommended that this 
Analysis Plan be submitted before any analysis is undertaken.  The SAP should include 
procedures for external validation, data normalization, assessment of quality of the 
microarray data, feature selection, (optional) internal cross validation, selection of 
algorithms for prediction, evaluation of performance (and its variability), including 
comparison with existing clinical predictors, (optional) evaluation of reproducibility, any 
hypothesis testing, and the treatment of missing data.  A checklist in the Appendix 
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provides some framework about the scope of the SAP.  This document on Standard 
Operating Procedures, Methods and Analysis provides guidance on the procedures and 
essential characteristics of an SAP, but is not intended to exclude the use of other 
accepted or novel methods provided they are supported by peer-reviewed publications or 
explained with sufficient detail in the SAP.  Additional guidance on the development and 
validation of classifiers is available in Dupuy and Simon (2007, JNCI, 99, 147-57).  

             
2. Quality Assessment 

One way that the quality of microarray data can be assessed is using a quantitative (or 
possibly qualitative) measure describing the quality of each sample in a dataset but a 
more general notion is the quality of the system (assessed in part through repeatability 
and reproducibility of the array platform) as well as the quality of the experiment from 
which the data came.   

a. Available quality control metrics:  It is anticipated that quality control metrics 
will be made available for every sample within each dataset by members of the 
different Working Groups and will accompany the data package distributed with 
each dataset.  Metrics to describe the quality of each sample will be available at 
the following levels where appropriate to the specific dataset:  (1) at the level of 
sample procurement and/or extraction; (2) array-specific level; (3) experiment-
wide level.  Quality control is of particular importance to assess the quality of 
samples collected at different times or sites or processed by different methods.  A 
particular quality measure for arrays can then be used to support the justification 
for inclusion in, or exclusion from, of each sample from the analysis.  It is 
expected that this will be done prior to development of any classifier.  It is 
expected that sufficient information to support sample quality will be provided to, 
or generated, by the MAQC-II prior to data distribution.  Different Analysis 
Groups for the same dataset may choose to share their assessments of quality of 
the data.    

b. Quality control metrics for any new platforms:  Should other new platforms be 
included in the MAQC-II project, an equivalent and comprehensive set of quality 
control metrics will be proposed to the MAQC-II Steering Committee for review 
prior to inclusion of any data in the MAQC-II for distribution to the Analysis 
Groups. 

c. Review of quality control metrics prior to data release:  It is expected that data 
quality review committees (DQRC) will be formed by the different Working 
Groups to assess the quality of all samples and arrays included in the MAQC-II 
project.  Attempts will be made by the DQRC to establish general thresholds or 
methods which facilitate the identification of samples or arrays that may be 
excluded from the MAQC-II project on the grounds of insufficient quality.   

d. Definition of insufficient quality for microarrays: 
i. Insufficient quality of sample procurement and/or extraction procedures 

may be identified for samples with missing or inconsistent information. 
ii. Insufficient quality of each array will be defined by failure to meet 

quality control metrics thresholds defined by the DQRC. 
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e. Use of poor quality microarray data:  Samples having insufficient microarray 
quality as identified by the DQRC may be included in classifier development by 
Analysis Groups at their own discretion. 

f. Repeatability and reproducibility:  Is there enough information in the dataset to 
understand the variability from array to array or from time to time or from site to 
site? 

g. Overall quality of experimental design and the associated clinical data:  It is 
vitally important to assess the quality of the overall experiment in which the 
microarray data arose and, in particular, to assess the quality of the clinical (non-
array) data.  Either a poorly designed experiment or a well-designed experiment 
with poor quality control of the clinical data is likely pose insurmountable 
challenges to its use in MAQC-II. 

h. Review and use of quality control metrics by Analysis Groups post data 
release: Use of quality control metrics and identification of samples of 
insufficient quality may not be used to exclude samples from consideration after 
classifier development unless it is a valid component of the Statistical Analysis 
Plan (see Appendix) or an integral component of the classification algorithm (c.f. 
§5) as outlined by the Analysis Group prior to receiving the corresponding data 
package. 

i. Quality control review of prospective data:  Data received by the MAQC-II 
subsequent to the initial release of retrospective data will require a quality 
evaluation by the DQRC of the same type used for the initial data prior to its 
release to MAQC members and the appropriate Analysis Groups. 

 
3. Data Normalization 

Observed expression levels can include many sources of variability that have different 
effects on the data. This includes variations due to sample preparation, manufacturing of 
the arrays, and the processing of the arrays (labeling, hybridization, and scanning).  Each 
Analysis Group may consider normalizing the arrays and it is expected that how that will 
be accomplished will be described by each Analysis Group in its Statistical Analysis 
Plan.   

a. If studying the impact of normalization on performance of classification models is 
the goal of an Analysis Group, the Analysis Group may compare many different 
methods available for normalization of gene expression data, and then use the 
preferred method in the independent dataset (retrospective hold-out data or 
external prospective data). (Ref.: “Comparison of Affymetrix GeneChip 
expression measures”, by Irizarry et al., 2006. See Table 1 for many different 
methods of normalizations together with the corresponding references).  

b. In the case of multi-array normalization, the method and parameter estimates to 
be used for new subjects or chemicals should be included in the experimental 
design report provided to the biostatistician. Here, the new subjects or chemicals 
are part of the prospective (external) validation data. 

c. For normalization methods that include background correction, the Experiment 
Plan should indicate if the background correction is global and/or probe-specific. 

d. It is not appropriate to use the entire dataset for the multi-array normalization if 
part of the data is being held out for the test set validation. Normalizing across the 
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entire dataset means that the training samples are being used in part to classify the 
test samples, an approach that may introduce bias in the estimates of performance 
from the test data. Data normalization should not be part of internal cross 
validation (with repeated train/test).  

e. If a normalization is implemented, the method has to be adaptable to normalizing 
one additional array (such as a prospective one) that does not alter the values of 
the previous or reference arrays; i.e., the current summarized value from an array 
in the training set is not and should not depend on the arrays that are yet to be 
created.   

 
4. Feature Selection 

Feature selection (e.g., of genes or gene variants) can be an integral step in classifier 
development.  If there is not some attempt to focus on a smaller subset of features, there 
is a concern by some that, with so many possible features on a microarray and so 
relatively few subjects, it may be very easy to find a classification model that achieves 
complete separability between the groups but may have absolutely no chance of being 
validated.  Feature selection may also be required to make computation feasible. All 
feature selection algorithms are expected to be outlined within the Statistical Analysis 
Plan and either supported by peer-reviewed literature or described in detail. 

a. Feature selection algorithms/workflows can be grouped into three classes: filter, 
wrapper and embedded.  A filter is a feature selection method that selects genes 
based on individual performance.  A wrapper is a feature selection method, such 
as cross-validation, embedded within a training dataset, which selects 
combinations of features that give the best performance.  A wrapper has the 
advantage of being able to find synergies between genes but can require more 
training data than a filter.  Embedded methods select features for use in the 
process of learning.  Other strategies include multiple random validations within a 
training sample to select genes with the highest frequency of being selected. (cf. 
Stuart G Baker and Barnett S Kramer, BMC Bioinformatics, Identifying genes 
that contribute most to good classification in microarrays, 2006, 7:407) 

b. Feature selection may need to be part of any cross-validation of a classifier.  A 
frequent error in cross-validation is to select features based on the entire dataset, 
and then cross-validate only the model built on those selected features.  Simon et 
al (JNCI, 2003, 95, 14-18) demonstrate that cross-validated estimates of 
performance can be overstated tremendously if the cross-validation does not 
include feature selection.  A very important aspect of this project is to validate the 
process of predictive modeling using genomic data and not to validate specific 
probes or transcripts that may be optimal for a given predictive model.  With so 
many variables to choose from, the challenge may be to determine how to reduce 
the dimensionality of the problem so that one may have a reasonable expectation 
of validating any classification model. 

c. Given that several genes may be on the same pathway, the correlation structures 
among the genes can be utilized in feature selection. More formally, refined 
feature selection methods may be based on the joint distribution of the gene 
expression measures. This also has the potential of reducing the number of 
features selected for the classifier. 
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d. It is recommended that feature selection be approached taking into account the 
covariates.  Potential features for a classifier may include not only genomic 
features but also existing clinical predictors. When gene-environment interactions 
are present, including both types of features in the classifier may significantly 
improve its predictive accuracy.  For such classifiers, the genomic features should 
demonstrate added value over an optimal classification model using only the 
clinical predictors (c.f. § 10).  Adjusting for such covariates may lead to the 
selection of features that improve the classifier’s validated performance.   

 
5. General Guidance on Choice of Classification Algorithm(s) 

The choice of classification algorithm(s) is at the discretion of the Analysis Group.  It is 
expected that it would be included in the Statistical Analysis Plan that would be reviewed 
by a committee of RBWG.  A detailed description of the classification algorithm’s 
implementation and model development sufficient to enable independent verification by a 
separate group must be provided (see Appendix).  This would include any 
transformations of the data which are also expected to be detailed in the Statistical 
Analysis Plan (c.f. Appendix) 

a. Commonly used algorithms: A list of some of the commonly used classification 
algorithms may be made available upon request to Analysis Groups for reference. 

b. Use of novel and/or proprietary classification algorithms:  It is anticipated that 
some AGs may employ novel and/or proprietary classification algorithms.  

i. It is expected that any such algorithm will be made available to other 
groups for the purpose of independent validation of performance in 
prospective samples. 

ii. Confidentiality of intellectual property protecting the provider of the 
algorithm will need to be worked out by the groups that share these 
algorithms with the advice of the Steering Committee. 

c. Inclusion of covariate data in classification models:  The use or development of 
classification algorithms capable of including covariate data as input features are 
required to conform to the criteria set forth in §7.a-c.  It is expected that 
comparisons will be made to classification models developed strictly on the 
covariate data. 

 
6. Performance Measures 

An essential outcome of the MAQC-II project will be the ability to assess the 
performance of classification models not only in the context of internal cross-validation, 
but also in prospective validation through the use of independent datasets derived from 
equivalent tissue, disease or challenged samples or through the use of new samples 
processed according to an initial experimental design.  In order to achieve this outcome, 
performance measures must be established.   

a. Selection of Performance measure(s):  The choice of performance measures is 
at the discretion of the Analysis Group subject to approval by the RBWG 
Statistical Analysis Plan review committee (c.f. Appendix). 

b. Accounting for indeterminate or invalid results.  The fraction of samples for 
which the classifier yields an invalid or indeterminate result is an important 
performance measure.  For example, missing data on an array can hinder some 
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classifiers more than others. Classification algorithms that provide diagnostic 
confidence of prediction in addition to the prediction itself may include a binary 
decision in the model development to identify whether each sample is deemed 
classifiable (regardless of whether the classifier result is valid or not). 

c. Use of novel and/or proprietary performance measures:  It is anticipated that 
novel and/or proprietary performance measures may be implemented in the 
MAQC-II.  It is expected that the performance measure will be made available for 
the purpose of independent validation of performance. 

d. Assessment of statistical significance of performance measures:  Statistical 
measures (such as variance, confidence intervals, etc.) should accompany 
performance measures.   

e. General Guidance on appropriate use of performance measures.  Care should 
be given to the interpretation of performance measures in the presence of 
spectrum bias; i.e., when the data set that is being evaluated does not adequately 
represent the target population of interest in terms of the disease categories. 

 
7. Data Partitioning and Methods for Internal Validation 

In gene expression data, the number of genes that can be used in the classifier is often 
much larger than the number of subjects available for analysis. Therefore, having a 
classifier that accurately differentiates between classes in the same dataset that are used 
in the development is by no means guaranteed to be a good classifier in the independent 
validation phase.  Internal validation can be used to weed out some of these ineffective 
classifiers.  This process of internal validation can facilitate a better understanding of the 
misclassification error for the model. 

a. Two types of internal validation are: (i) split-sample (retrospective) validation in 
which one portion of the data is held out (test dataset) while the classifier is being 
developed on the remaining data (training dataset) and then is tested on the test 
dataset. (ii) cross-validation in which the data is repeatedly divided into training 
and test datasets where the classifier is built on the training set and tested on the 
test set. This is done many times and assessment of classification error rate is then 
estimated. (Ref: “Roadmap for Developing and Validating Therapeutically 
Relevant Genomic Classifiers”, by R. Simon, JCO, 2005). 

b. In the split-sample validation procedure, a method for dividing the original dataset 
should be provided. One could choose to divide the data using either a random 
split or a split based on chronology or sites, for example.  Note that withholding, 
for example, only 10% out for a dataset of moderate size to then use as a test set 
may not be sufficient.  A larger test dataset may be required. 

c. In the cross validation procedure, it is recommended that the uncertainty of the 
classification error rate be assessed    

d. In both internal validation approaches, it is recommended that all steps used for 
building the classifier be done on each training separate dataset. The resulting 
classification method is then tested on each corresponding test dataset. 

e. Examples of cross validation approaches include:  
i. Leave-One-Out CV (LOOCV) 

ii. K-fold CV (K varies, e.g. K=2, 3,4….) 
iii. Multiple random cross validations MRCV (partition size varies). 
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f. Alternate methods of partitioning or sampling the dataset (for the purpose of 
training and testing the classification model) in order to report estimates of 
performance should be supported by peer-reviewed publication(s) or a detailed 
description in the Statistical Analysis Plan sufficient for review by the RBWG. 

 
8. Sources and Procedures for the Use and Identification of Independent (External) 

Validation Data 
It is expected that each Analysis Group will identify a mechanism to provide independent 
validation for any classifier.  In most cases this will be through the use of prospectively 
acquired data.   

a. Sources of external validation under consideration include: 
i. Prospective data with the same disease area from the same institution 

processed by the same lab 
ii. Prospective data with the same disease area form the same institution 

processed by a different lab with the same kind of microarray 
iii. Prospective data within the same disease area but at different and/or 

multiple institutions 
b. The method for normalization of external data with respect to training datasets is 

to be specified in the Statistical Analysis Plan (c.f. Appendix) 
c. All external (prospective) validation data will be unavailable until the final lock-

down of the developed classifier is established and verified by an RBWG 
committee.  Validation data are to be used once and only once for the purpose 
estimating performance of the classifier; for example, after using the validation 
data to test classifier performance, the classifier may not be modified and tested 
again.  
i. Any prospective data will be delivered to all groups simultaneously with the 

following exception:  Analysis groups that have not yet completed the 
development of their classifier(s) will not receive the validation datasets 
until development is completed. 

ii. Should any suitable dataset(s) become available for validation after the 
classifier is built, all appropriate Analysis Groups will be informed and 
provided with the corresponding microarray files, clinical covariates and 
quality control metrics.  

iii. If one or more publicly available datasets are used for training and 
validation of classification models, the dataset that will be used for 
validation should be specified in the Statistical Analysis Plan.  

d. Validation dataset performance may be verified by one or more groups that are 
independent of the Analysis Group.  Each Analysis Group that submits a classifier 
for validation is expected to be willing to validate not only their classifier but at 
least one other AG’s one as well. 

e. An approach that is less preferable is to rely on another independent but 
retrospective data set for the validation.  In such a case it is vitally important that 
the dataset chosen for validation not be in the public domain.  This dataset would 
be released to the Analysis Group only after the classifier has been built.  

f. It is possible but very challenging to try to use a portion of an existing 
(retrospective) data set for a quasi-independent validation.  In such cases, it is 
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absolutely essential that a decision to hold-out data would be made before any 
analysis of any sort (including normalization, selection of features, etc.) was 
attempted.   This would need to be conveyed to the Regulatory Biostatistics 
Working Group before the data are electronically transferred or very soon 
thereafter.  In such cases, it is important that when the data are split off for the 
validation set that a random split not be used.  A split based on chronology of the 
samples or chronology of the processing of the arrays or based on test sites would 
be recommended to be able to address the criticism that a random split would 
generate; namely, that the classification model is fitting to the idiosyncrasies of 
the particular data set and therefore may not be generalizable beyond it. 

 
9. Missing Data 

Missing data are common in microarray experiments.  The Statistical Analysis Plan 
should pre-specify a plan for handling missing data both at the development and 
validation stages of the classifier.  A plan for handling missing data needs to anticipate 
missing data in the training set as well as the validation set, in the clinical as well as 
microarray data, and in the outcome variable.  One approach to handling missing data 
may be imputation.  It is quite likely that a plan for dealing with missing data will be 
needed at the time of classifier development as well as at validation, depending on the 
integrity of the dataset under consideration. 

a. Impact on performance: If missing data in a sample are such that classifier cannot 
produce a valid result, then a pre-specified Intent-To-Diagnose analysis plan 
could be used to include the result as a positive or negative, or incorrect test 
result, whichever is more appropriate with regard to the anticipated management 
of patients in these cases.  The Intention-to-Diagnose Principle dictates that a 
result cannot be ignored or dropped if the intention was to diagnose that 
individual. Although an analysis of only evaluable subjects that excludes 
unsatisfactory results can sometimes be appropriate to handle missing data, it may 
not fully represent the performance of the classifier.  If too many results are 
invalid, the test may be too impractical for clinical practice. 

b. Missing data in the clinical variables: When comparing a genomic signature to 
existing clinical predictors, a plan for the handling of missing data in the clinical 
predictors as well as in the genomic features needs to be pre-specified.   

c. An assessment of the missing values and the types of missing data should be 
considered in the Statistical Analysis Plan and it is expected that the SAP will 
have a pre-specified approach for the missing data.  For example, sometimes a 
missing gene may have clinical importance and imputation of its expression value 
may not be appropriate.  Missing data may be missing for different reasons.  The 
assessment of the missing values and the types of missing data should be made.  
For example, if the data are not missing at random (MAR), multiple imputations 
based on MAR assumptions are not appropriate. Sometimes a missing gene may 
have clinical importance and imputation of its expression value may not be 
appropriate, e.g., when the missing gene is an existing clinical predictor to which 
you are comparing the genomic signature. 

 
10. Statistical Inference 
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For a classifier to have clinical utility, a necessary but usually not sufficient requirement 
is that has some ability to discriminate subjects with the target condition (phenotype) 
being diagnosed from those without it.  A classifier with discriminatory ability is called 
an informative classifier. To take an extreme example, consider classifying subjects 
according to the toss of a coin that has an 80% chance of turning up heads (i.e., of being 
test +).  Because the chance of testing positive is the same for subjects with the 
phenotype (80%) as subjects without it (80%), the coin classifier has no ability to 
discriminate between the two groups of subjects.  Note that the coin classifier has 
sensitivity 80% and specificity 20%, which may appear to be reasonable, but in fact is 
not: it has no clinical utility because it is completely useless as a discriminator.  
The  question of whether a classifier is informative is a subtle but fundamentally 
important measure of performance in the context of clinical utility and will be addressed 
as a focus of the MAQC-II project.  The following subsections provide further context to 
this issue and should be considered by Analysis Groups as a challenge to the performance 
of the classification model in terms of clinical utility in a regulatory setting: 

a. An important necessary feature of any classifier is that it is informative. 
Mathematically, a classifier can be shown to be informative for diagnosing a two-
state phenotype if one of the following conditions hold: (1) sensitivity + 
specificity > 1 (this is sometimes expressed as sensitivity (Se) > 1 – specificity 
(Sp), or True Positive Rate > False Positive Rate), (2) (Positive Predictive Value 
(PPV) + Negative Predictive Value (NPV) > 1, (3) PPV > prevalence, (4) NPV< 
1-prevalence, (5) LR+ > 1, (6) LR – < 1, (7) odds ratio > 1, or (8) for classifiers 
dichotomizing a semi-quantitative or continuous variable, the area under the ROC 
curve (AUC) > 0.5.  Here LR+ = Se/(1-Sp) is the positive likelihood ratio,  LR– = 
(1-Se)/Sp is the negative likelihood ratio, odds ratio = LR+ / LR– is the odds of 
testing positive in subjects with the phenotype over the odds of testing positive in 
subjects without it. Furthermore, since different statistical inferences are 
associated with each of the above conditions, it is absolutely crucial that the 
particular criterion be identified in the Statistical Analysis Plan, before the data 
are analyzed. 

b. Accurate but non-informative classification models: A common misconception 
that has circulated in the microarray class prediction literature is that a classifier is 
informative if its predictive accuracy (probability of correct classification) is 
greater than 50%.  On the contrary, non-informative classifiers can have 
predictive accuracy greater than 50% and informative classifiers can have 
predictive accuracy less than 50%.  The reason is that predictive accuracy 
depends on the prevalence of the phenotype that is being diagnosed. As an 
example of the former, a classifier with sensitivity 80% and specificity 20% for 
diagnosing a phenotype with prevalence 90% has predictive accuracy of 74%, yet 
is useless (e.g., does not meet condition (1) above).  As an example of the latter, a 
classifier with sensitivity 80% and specificity 40% for a phenotype with 
prevalence 10% has predictive accuracy of 44%, yet is informative (e.g., meets 
condition (1) above).  Therefore, predictive accuracy alone is not an adequate 
evaluation of classifier performance.   

c. A classifier can be shown to be informative for a condition (e.g., in an external 
validation study) with a hypothesis test or confidence interval. For example, to 
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show statement (2) above, a statistical analysis needs to demonstrate that, 
statistically, sensitivity is significantly greater than one minus specificity. 

d. To have clinical utility, a genomic classifier should provide added value to 
existing clinical predictors.  A genomic signature has added value if either (i) it is 
superior to existing clinical predictors of the phenotype or (ii) the combination of 
it with the clinical predictors is superior the clinical predictors alone.  Again, it is 
expected that the Statistical Analysis Plan will clearly indicate which 
demonstration of added value, (i) or (ii), is the approach of the investigators. 

e. The ability to show added value over the clinical predictors may depend on the 
quality of the model built using the clinical information alone.  Analysis Groups 
for the same dataset are encouraged to compare their models based on the clinical 
information alone.    

f. Conditions for which a diagnostic test is superior to another diagnostic test are 
given in Biggerstaff (“Comparing diagnostic tests: A simple graphic using 
likelihood ratios”, Statistics in Medicine, 2000, 19: 649-663).   

g. The particular test statistic that is to be used to demonstrate added value needs to 
be identified.  In some cases statistical inference based on logistic regression may 
be appropriate for demonstrating added value of a genomic signature to clinical 
predictors. For classifiers based on an underlying semi-quantitative or continuous 
variable, ROC regression or other regression techniques may be appropriate for 
demonstrating added value. 

 
11. Performance Variability Measures 

It is important that the variability of the predictive model be assessed.  One reason is that 
it is not sufficient merely to establish numerical superiority (as for example that 
sensitivity is numerically greater than one minus specificity or that the area under the 
ROC curve is numerically greater than 0.5).  The statistical challenge is to show that for 
the performance measure that has been selected a priori, the claims can be demonstrated 
statistically taking the variation into account.   

a. Variability of future predictions: Is enough understood about variation that the 
variability associated with a single future unit (patient) can be well characterized? 
There are in fact many sources of variability: for example, from variability of the 
arrays to the choice of normalization, the choice of features, the choice of how 
many and which units to use for the training set, the obvious variability associated 
with the size and choice of the test set.   Some might propose a strategy that after 
the test set is used once, then the training and test sets are recombined and a 
different training and test set are selected.  There is a danger here that one may 
not be able to sufficiently reproduce all the steps in the new training set, as 
observed in terms of the lack of reproducibility of bootstrapping by R. Simon 
(ref.) 

b. Estimators of variance: The existence of an unbiased estimator of the variance for 
cross-validation is still the focus of debate.  Consequently this should be 
considered as an active topic under consideration for the MAQC-II.  Alternate 
methods for estimation of the variance of performance measures should include 
(but not be limited to) generalized or smoothed cross validation and the use of the 
delta-d-jack-knife method as an alternative to fold cross-validation. 
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12.  Statistical Analysis Plan 

It is expected that each Analysis Group will prepare and submit a Statistical Analysis 
Plan of how that group intends to analyze the data.  It is recommended that this will be 
submitted before any analysis commences.  This Statistical Analysis Plan will be 
reviewed by a committee of the Regulatory Biostatistics Working Group (RBWG) that 
does not include any statisticians on the AG.   In particular, a specific Statistical Analysis 
Plan describing methodology for each AG will be provided to the RBWG for review 
prior to the validation of classifier(s).  An Analysis Group runs the very real risk that any 
analyses performed on data based on an inadequate or flawed Statistical Analysis Plan 
are unlikely to be accepted for comparison or publication with the MAQC-II results.  It is 
expected that the Statistical Analysis Plan is will include the Checklist in Appendix 1. 
 

13. Revisions 
Any revisions to the Statistical Analysis Plan should be documented and submitted to the 
committee of the RBWG.  No validation set will be released to any Analysis Group until 
the Statistical Analysis Plan has been submitted and reviewed by a committee of the 
Regulatory Biostatistics Working Group. 

 
14. Documentation 

It is expected that each AG will keep the equivalent of a laboratory notebook detailing on 
a regular basis as it happens what procedures were followed, how the features and the 
classifiers were selected, and how they were evaluated.  In addition, at the time of 
manuscript preparation, each AG should be prepared to provide this equivalent of a 
laboratory notebook to the RBWG committee.  The reason for this is to be able to provide 
assurance that good scientific method has been followed (it also has the benefit of 
recording how the AG evolved in its thinking and arrived at its final model).  This is 
something that most bench scientists take for granted and we should expect no less in the 
MAQC project. 
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Appendix:  Statistical Analysis Checklist 
 
 
This checklist is to be submitted with each Statistical Analysis Plan or a Revision to it.   

 
Check the appropriate line. If YES provide details when applicable. 

 
YES NO 

a. A complete list of all members included in the AG 
b. Objectives and specific methods _______        _______ 
c. A brief description of both dataset(s) and the 
      experimental design from which the data were 
      generated. 
 This includes list of all assays, the sites (clinical  

and laboratory), the time and site at which the  
specimen was obtained, the time and site at which  
the assay was performed, inclusion/exclusion  
criteria, and an accounting of all specimens  
(including specimens for which  
deviations from the SAP occurred, specimens  
with missing results by reason, specimens with  
invalid results by reason, etc.) _______        _______ 

d. Spectrum bias evaluation, e.g., a comparison of  
the dataset and the target population of interest  
on the distribution patient characteristics _______        _______ 

e. Specific discretization procedures of continuous  
outcome (if any) _______        _______ 

f. Definition of class labels _______        _______ 
g. Reasons for sample exclusion (if applicable) _______        _______ 
h. Quality control assessed _______        _______ 
i. Reproducibility of arrays _______        _______ 
j. Description of normalization method to be used 
       (if any) _______        _______ 
k. Data transformation (if any) _______        _______ 
l. Description of missing data and any imputation 
 (if applicable) _______        _______ 
m. A plan for the development (training) of  
 classifier(s) _______        _______ 
n. Classification method(s) to be considered: 

i. Criteria for feature selection (if any) _______        _______ 
ii. Model development _______        _______ 

iii. Classification rule _______        _______  
o. A validation plan for developed classifier(s): 

i. Prospective validation _______        _______ 
ii. Retrospective external validation  

(training-test split sample) _______        _______  
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a. Chronological split: sample processing 
(preferred) _______        _______ 

b. Chronological split: sample collection 
 (preferred) _______        _______ 

c. Split by sample processing site  
(preferred) _______        _______ 

d. Split by sample collection site 
(preferred) _______        _______ 

e. Other non-random split (preferred) _______        _______ 
f. Random split (not recommended) _______        _______ 

iii. Internal cross-validation 
a. Feature selection _______        _______ 
b. Model development _______        _______ 
c. Classification rule _______        _______ 
d. Missing data imputation   

(if applicable) _______        _______ 
p. Choice (and methods) for selection of partitioning  

for internal and hold-out validation dataset(s). 
This should include methods for sample size and  
should be made before any analysis is conducted _______        _______ 

q. A complete list of algorithms involved in  
development of classification model (including 
feature selection, normalization, missing data  
imputation, and model selection) _______        _______ 

r. A list of statistical hypotheses to be tested at  
 validation stages  _______        _______ 
s. A list of endpoints in validation phases 

(e.g., ROC AUC, Se, Sp, PPV, NPV,  
LR+, LR –, and time-to-event) _______        _______ 

            t.    Identification of the test statistic for the inference      _______        _______ 
u.  A list of clinical covariates and their distributions _______        _______ 
v.    A list of clinical predictors to compare against  

genomic classifier(s) or to be included as part 
of classifier(s) _______        _______ 

w.  Analysis plan for testing if genomic classifier(s) 
adds significant value over clinical predictors _______        _______ 

x.   Description and source of all code and random  
number seed(s) included _______        _______ 
i. Others _______        _______ 
ii. Comments 
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