The inferred HIM-5 amino acid sequence

MSRIRSNNDN IIILTDEQRK TVGRIAGRSQ NRNTSKKIAD GPYFLPRYRI RDNAERSVGA RFKSLPQKEQ DEVVNEAFSN LREYLKKREP FYAKLRKANS KYSSKPKERE KSVDSNDEAD RRNKGNKKTQ KNASKNCQIE KSSNNSGILK KSGSGISVAS KPKKSVAFAP GVYEDLSTDD DLEFLNSVIV NSDRPTSQCD NPARRMCGRP PTKHRDTEQS QEITGSKKQK IFPTPHEKPA WWSFRIPKKR AQ

Results from using LALIGN to compare him-5 with hsp83 from Drosophila melanogaster.

Watern	nan-Eggei	rt sco	re: 72;	21.6 bi	ts; E(1)	< 0.05	54	
24.0%	identity	y (53.	8% simil	ar) in 10	04 aa ov	erlap (4	8-151:158-2	55)
	50	60	70	80	90	100	110 1	20
him-5	YRIRDNAERS	VGARFKS	LPQKEQDEVV	NEAFSNLREY	LKKREPFYAR	(LRKANSKYS)	SKPKEREKSVDSNDE	ADRRNKGNK
HSP83	: FTVRADNSEF 160	.: : LGRGTKI 170	VLYIKEDQTD 180	:: YLEESKIKEI 190	VNKHSQFIGY 200	: . /PIKLLVE 210	KEREKEV-SDDE 220	ADDEKKEGD 230
bim_5	130	140	150					
nin-2	KIQKNASKNC		INSGITYK					
HSP83	EKKEMETDEP 240	KIEDVGE 2	DEDADKK 50					

Figure S1 The inferred amino acid sequence of HIM-5 is highly basic and novel. The region of optimal alignment with HSP83 from Drosophila melanogaster is highlighted in red and the alignment is shown at the bottom. The E value is 0.05, as shown. The sequence KEREKxVxSxxDEAD is not identical in the HSP83 proteins from other species so its function is not known.

Figure S2 Pairing is normal in him-5 mutants. Shown is a him-5(ok1896) germline (top) and a zoomed in region of mid-pachytene (below). Anti-HIM-8 (magenta) staining indicates that full pairing is achieved between X chromosomes.

Figure S3 him-5 mutants have a desynapsed X chromosome at pachytene. A. The SC is fully established in early pachytene as shown by the complete coincidence of SYP staining (magenta) with DNA (green). B. A mid-to-late pachytene nucleus stained for DNA (green), SYP-1 (magenta), and HIM-8 (cyan in wild type; yellow in him-5) is shown. In wild type, all chromosomes are fully synapsed. As seen in the overlay on the bottom row, one chromosome is desynapsed and lacks SYP-1 staining in him-5(ok1896) mutants. The desynapsed chromosome stains with an antibody against the X chromosome pairing center binding protein, HIM-8 indicating that this is the X chromosome. Note that a single HIM-8 focus is seen indicating that the X chromosomes remain paired after desynapsis.

Figure S4 A *him-5* deletion lacks HIM-5 but retains localized XND-1. Germlines from *him-5(ok1896)* were stained for DNA (top), HIM-5, XND-1, and the nuclear pore, as indicated. The *him-5* mutants lack HIM-5 staining, as expected for the deletion. Conversely, XND-1 stains normally, indication that the wild type activity of *him-5* is not needed for XND-1 localization.

Figure S5 him-5 does not affect H2AK5 acetylation. H2AK5Ac is indicated by magenta. A germline (left) and midpachytene nuclei (right) are shown from wild type and him-5 (ok1896). No consistent differences between wild type and him-5 are observed. These data reveal consistent lack of H2AK5Ac on a single chromosome, which we infer from DAPI intensity to be the X chromosome.

Figure S6 RAD-51 dynamics differs in him-5 and xnd-1. DNA (grey) and RAD-51 (white foci) are shown as maximum projections from confocal stacks through wild type (top), him-5(ok1896) (middle), and xnd-1(ok709) (bottom) germlines. The germlines were divided into seven equal sized regions from the transition zone (zygotene) to the pachytene- diplotene border and number of RAD-51 foci/ nucleus was quantified (see Figure 7B). The white foci in wild type in regions 5 and 6 are due to background staining with the anti-RAD-51 antibody and can be discerned in the rachis in 3D projections (not shown). In him-5, arrows point to small RAD-51 foci in the distal region. Breaks in this region can readily be observed in this region in Figure 7A.

dsRNAª	# P0 ines with males ^b	Frequency	# F1 lines with males	Frequency
D1086.4 5'	2/16 ^{&}	2-5%	1/40	~5%
D1086.4 3'	4/22 [#]	2-10%	3/40 ^c	5-20%
D1086.5	0/18	N.A.	0/20	N.A.

Table S1 RNA interference of D1086.4 gives male progeny

^adsRNAs were injected into one day old adult wild type (N2) worms and allowed to lay on fresh plates each day for 3 days. ^bMales were only observed on plates from the 48-72 time period post-injection.

^cFrequency of males were 5% and 20%, the latter having a parent that gave 10% males.

Interval (Mb)	0.17 -1.91	1.91-4.59	4.59-10.72	10.72-12.05	12.05-14.68	N
wť ^a	8.9 (21)	10.6 (25)	0.0 (0)	5.5 (13)	26.3 (62)	236
him-5	5.4* (17)	11.1 (35)	16.2** (51)	7.3 (23)	10.5** (33)	320

Table S2 Crossover distribution on chromosome I from oocytes

Values are map units for each interval (number of COs per interval)

The change in crossover distribution between N2 and him-5 is statistically significant: $\chi^2(4,N=122)=1471$, p< .0001 *' **Significant difference in map size of the interval between wild type and him-5 (*p<0.1; **p<0.005) a Data is the same as in WAGNER *et al.* 2010.

Interval (Mb)	0.17 -1.91	1.91-4.59	4.59-10.72	10.72-12.05	12.05-14.68	N
wť	14.0 (46)	12.8 (42)	6.1 (20)	4.3 (14)	13.4 (44)	328
him-5	7.9* (22)	13.0 (36)	17.3** (48)	3.6 (10)	6.1** (17)	282

Table S3 Crossover distribution on chromosome I from sperm

Values are map units for each interval (number of COs per interval)

The change in crossover distribution between N2 and him-5 is statistically significant: c^2 (4, N=133)=79, p< .0001

*' **Significant difference in map size of the interval between wild type and him-5 (*p<0.05; **p<0.005)

^aData is the same as in WAGNER *et al.* 2010.

	0-12hr	Ν	12-24	Ν	24-36	Ν	36-48	Ν
N2 control	0	268	0	656	0	591	0	333
N2 IR	0	609	0	1375	0	1074	0	662
him-5 control	35	172	30.8	466	33.4	416	35.3	222
him-5 IR	45	496	8.4	1279	11.0	1065	16.1	430

Table S4 Percentage of males post-irradiation

Data represents the compilation of two independent experiments.

Values represent the percentage of males in the viable progeny and were calculated a (total number of males)/ (total wild type hermaphrodites + males) for each time point after exposure to 20Gy radiation. Since XXX Dpy progeny are sub-viable, they were excluded from these analyses.

Table S5	Hatching rates	post-irradiation
----------	----------------	------------------

	0-12hr	Ν	12-24hr	Ν	24-36hr	Ν	36-48hr	Ν
N2 control	100	268	100	656	100	591	100	334
N2 IR	88	692	100	1375	99.0	1074	98.2	674
him-5 control	72	239	75.7*	616	78.6	448	69.6	316
him-5 IR	77	631	92.8	1411	88.1	1142	78.4	548

Data represents the compilation of two independent experiments.

Values represent the percentage of the total viable progeny/total # eggs laid (N) for each time point after exposure to 20Gy radiation.

* The change in hatching rates between *him-5* and *him-5* post-IR is statistically significant: $\chi^2(1,N=616)=17.280$, *p*< .0001

# Apoptotic													
Nuclei/Gonad	0	1	2	3	4	5	6	7	Average	N	mean	St. Dev	SE Mean
N2	0	4	3	8	4	1	1	0	2.90	21	2.905	1.3381	0.292
him-5(e1490)	2	4	7	5	1	4	0	1	2.78	25	2.76	1.7861	0.357

Table S6 Apoptosis analysis with acridine orange

Student t-test DF:43 T-value 0.3143 P-value=0.7548

Breaks per Nucleus	6	7	8	9	10	11	12	13	14	15	16	Avg	N	Mean	St. Dev	SE Mean
N2 him-5	0	0	0	0	0	2	4	3	10	12	5	14.1	36	14.1	1.4	0.23
(ok1896)	1	2	8	16	11	5	10	2	1	0	0	9.9	56	9.9	1.7	0.23

 Table S7
 Total number of meiotic breaks analyzed by RAD-51 foci after rad-54(RNAi)

Student t-test DF: 84 T-value 13.0838 P-value = <0.00001