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File S1.  Markov Chain Monte Carlo Implementation Strategy for Ante-BayesA and Ante-1 

BayesB and Supplementary Tables and Figures. 2 

Joint Posterior Density of All Unknown Parameters:   In order to conduct MCMC, it is 3 

necessary to first specify the joint posterior density of all unknown parameters (SORENSEN and 4 

GIANOLA 2002).  To do this, we interchangeably reparameterize the joint density of the data y 5 

and the random SNP effects, using g for ante-BayesA and  for ante-BayesB in order to exploit 6 

algorithmic efficiencies that are unique to either model.  For instance with ante-BayesA, we 7 

write 8 

       2 2| , , , , | , , , | ,
δ δ

y,g β u σ t y β u g g σ te ep p p   [A1] 9 

Note the component    2 2| , , , ,y β u g Xβ Zg Wu Ie ep N     is based on Equation [1] 10 

whereas    ~ | , ,
δ

g g σ t 0 Gp N  with    
1 1

G I T Δ I T
      are defined by elements in 11 

1 2 3

2 2 2 2

δ
σ

m

           specified along the diagonal of  and by  
2,1 3,2 , 1, ,..., 't m mt t t 

     12 

specified just below the diagonal elements in T as previously indicated.  For ante-BayesB, we 13 

reparameterize [A1] differently: 14 

      2 2| , , , , | , , , |
δ δ

y,δ β u σ t y β δ t δ σe ep p p   [A2] 15 

recognizing that ( )δ I T g   such that [A2] represents a linear transformation of [A1].  That is, 16 

the first component of [A2] is based on     12 2| , , , ,y β δ t Xβ Z I T δ Wu Ie ep N


      17 

whereas    2

1

| 0,δδ σ
j

m

j

p N


  .  We’ll subsequently represent [A1] and [A2] together as 18 
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  2 2| , , , , , ,
δ

y,g δ β u σ t e t tp    to recognize the interchangeability between g and  when 1 

conditioning on t. The joint posterior density of all unknown parameters can be written as 2 

products of specifications provided previously: 3 
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[A3] 4 

From the paper,    ,
β

β β Vp N  ,     2 2

, 1 | , ,j j t t t tp t N     ,    2 2 2 2
| , ,

u u u u u u
p s s


     ,5 

   2 2 2 2
| , ,

e e e e e e
p s s


      ,    2

| , ,
s s s s

p s Gamma

    ,    2 2

0 0 0 0| , ,t t t t tp s N s   ,  6 

   2 2 2 2| , ,t t t t t tp v s v v s   , and    | , ,p Beta
    

     .  Furthermore,   2 2
| , ,

j

p s
   

   is a 7 

mixture analogous to Equation [2] for ante-BayesB whereas    2 2 2 2
| , , 1 ,

j

p s s 
             for 8 

ante-BayesA as described in the paper.   For some parameters, we subsequently derive and 9 

present FCD separately for ante-BayesA (   = 1) from ante-BayesB (   < 1) as some MCMC 10 

sampling strategies appear to be simpler or more computationally efficient for one or the other 11 

model.    12 

Now MCMC requires random draws from the full conditional densities of each unknown 13 

parameter (or blocks thereof) conditional on all other parameters and the data(SORENSEN and 14 

GIANOLA 2002).  These full conditional densities are provided below for various classes of these 15 

unknown parameters. 16 
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Sampling All Fixed and Random Effects in Ante-BayesA: Write  ' ' 'θ β g' u  as the 1 

(p+m+q) vector of fixed and random effects,   Q X Z W  as the n x (p+m+q)  overall 2 

model incidence matrix with  1 1 1 2

β
Σ V G A udiag       as a block diagonal matrix with the 3 

corresponding listed components as the various blocks.  It can be readily demonstrated 4 

(SORENSEN and GIANOLA 2002) that the FCD of  is  5 

 
 ˆ| ~ ,θ y, θ CELSE N

                                                
[A4]

 
6 

where  ELSE denotes all other  parameters in [A3] other than  and 7 

1

0 1 ( )
ˆ ' ' '

β
θ CQ y+ β V 0 x m q




    for   

1
2'C Q Q e


   .  Note that with a typical “flat” prior for 8 

 is defined by 1

β
V 0

    such that ˆ 'θ CQ y .  Also, note that univariate or multivariate block 9 

FCD subsets of  could also be partitioned and sampled using [A4] based on results from Wang 10 

and Gianola(1994)   The structure of  1 '
G

jjG   contained within Σ is  a simple tridiagonal 11 

matrix: using Zimmerman and Nunez-Anton (2010 pg 52), the diagonal elements are 12 

1

2 2 2

1,j j

jj

j jG t  


 

    for j = 1,2,….,m-1 with  2

m

mmG 


 
whereas the elements adjacent to the 13 

diagonal are 
1, 1

, 1 1, 2

j j j

j j j jG G t  

     . 14 

Sampling marker-specific variances in AnteBayesA: Consider now the FCD for 2

j
 , 15 

j=1,2,…,m: 16 

      
1 2 3

2 2 2 2 2 2 2

21 32 , 1| | , ,..., , , , ,..., | ,y g
j m jm mp ,ELSE p t t t p s               [A5] 17 

We use Chan and Jeliazkov (2009, pg 461) to simplify the first component of [A5] as follows: 18 
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[A6]  1 

Using the component in [A6] pertaining to 2

j
  in [A5] and  
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 [A7]
 

3 

i.e.    2 2 2 2| , 1,y
j jp ELSE s          .   As a sidenote, elements of  can be recursively 4 

derived from g: 5 

   

11

21 2 21 12

32 3 32 23

, 1 , 1 1

1 0 0 0

1 0 0

0 0 0

1 0

0 0 1

δ I T g

m m m m m mm

gg

t g t gg

t g t gg

t g t gg  

    
     
    
        
    
    
         

  [A8] 6 

Sampling fixed and random effects other than SNP effects in Ante-BayesB.  Here we deem it 7 

computationally tractable to sample the rest of the location parameters separately from g.   We 8 

again use Equation [A4] except that now we define  ' ' 'θ β u  as a (p+ q)x1 vector of fixed and 9 

random polygenic effects with   Q X W  being the corresponding n x (p+ q) submodel 10 

incidence matrix and  1 2
Σ 0 Apxp udiag     being the corresponding block diagonal matrix. 11 

We then sample using Equation [A4] and    1

0 1
ˆ ' ' '

β
θ CQ y-Zg + β V 0 xq

    for  12 

 
1

2'C Q Q e


   .  13 
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Sampling random SNP effects and variances in Ante-BayesB:  We consider the collapsed 1 

sampling strategy (Liu 1994) for jointly sampling 2

j
 and j  as previously adapted for Bayes B 2 

in Meuwissen et al (2001).  Consider the previously described mixture prior on the conditional 3 

variances 4 

   
2 2

2 2

0
| , ,

,

   

   1-j

with probability
p v s

v v s with probability



   

   


 

 


 
  [A9]

 5 

We jointly sample 2

j
 and j  from  2 , | ,y

j jp ELSE  ,  by sampling first from 6 

 2 | , excepty  
j jp ELSE   and then from  | ,yjp ELSE .  The first component of [A2] implies 7 

the following linear model: 8 

 y Xβ Hδ Wu e     [A10] 9 

where  
1

H Z I T


  .  Let’s further partition H into the jth column, hj, and other remaining 10 

columns H j ; similarly, we represent δ j  
as all elements of  other than j . Then we further 11 

rewrite [A10] as follows:
 

12 

 
y Xβ H δ h Wu ej j j j     

 
[A11] 13 

It can be readily demonstrated, following similar developments for BayesB provided by 14 

Meuwissen et al. (2001), that: 15 
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[A12]

 

16 

where  *
y y Xβ H δ Wuj j j     and ' 2 2

V h h I
jj j j e  

 

.   17 

Since [A12 ] is not a recognizable distributional form, a Metropolis Hastings step is required.  18 

We adapt the independence chains implementation (CHIB and GREENBERG 1995) as also adapted 19 

by Meuwissen et al. (2001) using the prior  2 2| , ,
j

p s       as the candidate density.   That is, 20 
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at MCMC cycle [k], one samples a candidate, say, 2[*]

j
 ,  from  2 2| , ,

j
p s     

 
conditioned 1 

upon the updated values for 2, s   and  .  One accepts 
[ ] *

2 2

j k j
    as the value for in cycle [k] 2 

with probability based on the Metropolis-Hastings acceptance ratio 
  *1

2 2 :
jj k

q

    3 

 

  
 

  

    
* 1

*1
*1

2 2 2

2 2
2 2 2

| , except | , ,
min ,1

;| , except | , ,

1,

y  

y  

j j k

jj k
jj k

j

j

p ELSE p s

q p ELSE p s

otherwise






  
  
      

 



   

 
   

    

      

 

[A13] 4 

If the proposal 
*

2

j
 is rejected, then set 

[ ] [ 1]

2 2

j k j k
    ; i.e., the value of 2

j
 in the previous 5 

MCMC cycle.   It can be demonstrated that using Meuwissen et al. (2001) that [A13] is further 6 

equal to: 7 
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[A14] 8 

Note that neither the determinant V j
 nor the inverse 

1
V j


are trivial computations since m is 9 

typically large.    Adapting a development from Rohan Fernando (personal communication) for 10 

BayesB, it can be readily shown that [A14] further simplifies: 11 
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     12 

 

[A15] 13 

where    
2

* 2 2

*' 'h h h h
jj j j j j ev     and     

[ 1]

2
[ 1] 2 2' 'h h h h

j k

k

j j j j j ev


    .  Once 2

j
  is 14 

sampled, one could immediately draw 
 
from  | ,yjp ELSE  readily seen to be 15 j
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' 2 ' 2
| , ,

h y
y

h h h h
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j j e
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p ELSE N
 

 
 
  
  




 
 [A16] 

1 

in order to complete the joint collapsed sampler draw from  2 , | ,y
j jp ELSE  .  One could  2 

demonstrate the following backward recursive relationship 1 , 1 1h h zj j j j jt    ,  j = m, m -2,….,2 3 

with zj denoting column j of Z and hm= zm.  Hence for computational tractability, one could use 4 

this relationship in sampling pairs from  2 , | ,y
j jp ELSE   starting with j = m and working 5 

recursively backwards to j=1. 6 

Sampling proportion of SNP markers associated with zero-effects in Ante-BayesB:  The 7 

FCD of  is based on the following: 8 

     2 2

1

| , | , , | ,y
j

m

j

p ELSE p s p             



 

[A17]

 9 

where    | , ,p Beta         .  Let  2

1

1

0
j

m

j

m I 


   denote the number of zero-10 

valued elements sampled in δσ  for a particular MCMC cycle where I(.) denotes the indicator 11 

function.  Then it can be readily demonstrated that Equation[A17] is simply 12 

   1 1| , ,yp ELSE Beta m m m       
.
 13 

 14 

Sampling antedependence parameters and their corresponding hyperparameters:  Consider 15 

now deriving the joint FCD of 
2,1 3,2 , 1, ,..., 't m mt t t 

    : 16 

  

 

   
1 2 3

2 2 2 2 2

2,1 3,2 , 1 , 1
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| , ,..., , , , ,..., | ,

t y

g
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m

m m j j t t

j
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p t t t p t 



 
  

 
        

   [A18] 

17 

Borrowing developments, again from Chan and Jeliakov (2009, pg 462), the first component of 18 

[A18] can be rewritten as: 19 
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 [A19] 

1 

saving only terms that are functions of t  with  1 2, 1, ..., mdiag g g g    being a diagonal m-1 x 2 

m-1 matrix with the listed elements, 
  2 31

'g  mg g g

    , and  

2 3

2 2 2

( 1) , ...,
m

diag        3 

being a diagonal m-1 x m-1 matrix with the listed elements.   Hence,  [A18] can be rewritten as 4 

follows: 5 
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[A20]

 6 

where 7 

   
1

1 2

1
ˆ 'Σ Δ It t


 


     

[A21]

 8 

and 9 

        
1

1 2 1 2

1 1 1
ˆ ' 't Δ I Δ g 1t t t


   

  
         [A22]

 
10 

Note that 
 

1 2

1
'Δ I t

 


    is diagonal with elements  

1

2
2 2

jj tg


   ,  j = 1,2,…,m-1, whereas 11 

element j of  
   

1 2

1 1
'Δ g 1 t t  

 
    is 

1

2 2

1 jj j t tg g


 

    , j = 1,2,…,m-1.  In other words, the 12 

FCD of 1,j jt   is  
  2

1, 1, 1,
ˆ ˆ| , ~ ,yj j j j t j j

t ELSE N t  
   where  13 
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 [A23]

 1 

and  
2 

 
2

1,
ˆ

t j j
  =   1

1
2

2 2

jj tg



     

[A24]

 3 

Note further that 1,
ˆ

j jt  can be written as a weighted average: 4 
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 [A25]

 5 

Now with 0jg  , as one might anticipate occasionally with ante-BayesB with markers defined at 6 

the beginning of a linkage group, 1,
ˆ

j j tt     and  
 

2 2

1,
ˆ

tt j j
   such that one draws 1,j jt   from its 7 

prior density based on updated values of t  and 2

t .  For the much more common situation in 8 

ante-BayesB (assuming large  ) where gj ≠ 0 but 
1

2

j  = 0, the FCD of 1,j jt   
can be shown to 9 

be a point mass on 
1j

j

g

g


 . 10 

With  tp   specified to be normal with prior mean t0 and prior variance s
2

t0 then Gibbs 11 

sampling can be used for the corresponding parameters.   12 

   2,| ,y,ELSEt t tp N  
 

[A26]

 13 

where 14 
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[A27]

 15 

for 
, 1

2

1

m

j jt

t
m







  and 16 
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 [A28] 

1 

The FCD of 2

t  given that the prior  2 2| ,t t tp s  is scaled inverted chi-square with known 2 

hyperparameters t and 2

ts  can be derived as follows: 3 
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[A29] 

4 

That is,    
2

2 2 2

, 1

2

,| , ,y
m

t t j j t t t

j

p ELSE m t s





 
    

 
      .  Note that we advocate the non-5 

informative specifications 1t  
 
and 2 0ts   in the paper. 6 

 7 

Sampling the scale parameter for the random SNP effects:   Borrowing results from Yi and 8 

Xu (2008),  the FCD for 2s  based on the specification of a conjugate prior  2 | ,s sp s    = 9 

Gamma  ,s s   can be written as follows:  

 

10 
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 [A30] 

11 



S12 W. Yang and R.J. Tempelman  

 

 

i.e., a Gamma distribution with parameters 
1 1

2s

m



   and   2 2

1

0
2 j j

m

s

j
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   .  1 

Sampling the degrees of freedom parameter for the random SNP effects:   Simple 2 

Metropolis updates could be used for sampling   For an arbitrary prior  p  , the 3 

corresponding FCD is as follows:  4 
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 [A31] 

5 

Details on how to  can be based on a random walk Metropolis Hastings step; we have provided 6 

details on this in other non-genomic applications involving the sampling of degrees of freedom 7 

parameters  (BELLO et al. 2010; KIZILKAYA and TEMPELMAN 2005). 8 

Sampling the residual variance:  Given a specified scaled inverted chi-square prior 9 

   2 2 2 2,| , ,e e e e e ep s s      , the corresponding FCD of 2

e can be written as follows:  10 
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 11 

In other words, [A32] is     2 2, 'y-Xβ Zg Wu y-Xβ Zg Wue e en s         .  Note that we 12 

advocate the non-informative specifications 1e  
 
and 2 0es   in the paper. 13 

 14 

Sampling the polygenic variance:  Given a conjugate scaled inverted-chi square prior 15 

   2 2 2 2,| , ,u u u u u up s s     The FCD of 2

e is classically given as follows: 16 
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                          [A33] 1 

In other words, [A33] is  2 2, -1
u A uu u uq s     .  Note that we advocate the non-informative 2 

specifications 1u  
 
and 2 0us   in the paper. 3 
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 1 

FIGURE S1. Average posterior means of t  and empirical standard errors across 20 replicates for each of 2 

six different LD levels using ante-BayesA and ante-BayesB.   No significant differences (P>.01) were 3 
determined between the competing procedures with each other or from zero at each LD level. 4 
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FIGURE S2. Average posterior means of 2
t  and empirical standard errors across 20 replicates for each 2 

of six different LD levels using ante-BayesA and ante-BayesB.  No significant differences (P>.01) were 3 
determined between the two sets of competing procedures at each LD level. 4 
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FIGURE S3: Box-plot of proportions of the absolute posterior means of elements of  , 1 2

m

j j j
t  

 divided by their respective 2 

posterior standard deviations that exceeded 2 across all 20 replicates for each of six different levels of LD using ante-3 
BayesA (A) and ante-BayesB (B). 4 



S17 W. Yang and R.J. Tempelman  

 

 

 1 

FIGURE S4.  Average posterior probabilities of association for the top QTL within each of 20 replicates using 2 
BayesB and ante-BayesB for each of six different LD levels. LD-specific differences between the two methods 3 
declared significant by *(P<0.01), **( P <0.001), or ***(P<0.0001).  4 
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FIGURE S5. Bar plots of posterior probabilities of association of  either or both of two bracketing SNP to each of the six largest 2 
QTL effects within each of the first four replicates (A,B,C,D) at the highest (r2=0.31), medium (r2=0.24) and lowest (r2=0.15) 3 
average LD levels..  Posterior probabilities using BayesB and ante-BayesB are represented by green and black bars, respectively, 4 
whereas gray bars represent the proportion of the genetic variance accounted for by the corresponding QTL.   QTL location is 5 
labeled on x-axis for each replicate. 6 

 7 

 8 

  9 



S22 W. Yang and R.J. Tempelman  

 

 

 1 

FIGURE S6: Boxplots of estimated slopes for within-replicate regressions of true breeding values on estimated 2 
breeding values across 9 replicates for four traits in Generations 6, 8 and 10 from benchmark data of Hickey and 3 
Gorjanc (2011) using ante-BayesB (black), BayesB (dark gray), anteBayesA (light gray) and BayesA (white). 4 
Differences from unity indicated as significant by *(0.05<P<.10), **( 0.01<P<.05) or ***( P<.01).  5 
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FIGURE S7. Posterior means of antedependence parameters  , 1 2

m

j j j
t  

 versus corresponding SNP bracket location based on 2 

anteBayesA (left column) and anteBayesB (right column) for each of the first four replicates (rows 1 through 4) based on 3 
analyses using highest average marker density (r2 = 0.31)   Arrows denote the position for any QTL that accounted for greater 4 
than 2% of the total variance in each replicate.   5 
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FIGURE S8. Posterior means of g using ante-BayesA (left-column) and ante-BayesB (right-column) based on specifying 2 
antedependence in one direction along the chromosome against corresponding posterior means based on the same analyses but 3 
specifying antedependence in the opposite direction for each of the first four replicates (rows 1 through 4) and the highest 4 
average marker density (r2 = 0.31). Reference lines of intercept 0 and slope 1 are superimposed. 5 
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 2 

FIGURE S9. Posterior means of EBV using ante-BayesA (left-column) and ante-BayesB (right-column) based on specifying 3 
antedependence in one direction along the chromosome against corresponding posterior means based on the same analyses 4 
but specifying antedependence in the opposite direction for each of the first four replicates (rows 1 through 4) and the 5 
highest average marker density (r2 = 0.31). Reference lines of intercept 0 and slope 1 are superimposed. 6 
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FIGURE S10. Posterior means of g based on ante-BayesA versus BayesA (left-column) and ante-BayesB versus BayesB (right-2 
column) for each of the first four replicates (rows 1 through 4) and the highest marker density (r2 = 0.31). Reference lines of 3 
intercept 0 and slope 1 are superimposed.  4 
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TABLE S1 1 

Average posterior means (PMEAN), posterior standard deviations (PSD), posterior medians (PMED), and effective 2 

sample size (ESS) for residual variance (
2

e  ), cage variance (
2

c  ), polygenic variance (
2

u  ) and key hyperparameters 3 

( g ,
2

gs , and g ) based on BayesA and BayesB analyses of training data subsets derived from 10 different partitions of 4 

the heterogeneous stock mice dataset. Empirical standard deviations across the 10 partitions are provided in parentheses. 5 

Parameter PMEAN PSD PMED ESS 

BayesA      

2

e  
0.32(0.05) 0.15(0.003) 0.31(0.05) 6126(283) 

2

c  
2.08(0.13) 0.31(0.014) 2.05(0.12) 6048(247) 

2

u  
3.21(0.15) 0.49(0.018) 3.18(0.13) 5728(213)  

g  16.12(1.83) 23.11(2.72) 7.62(0.56) 285(20) 

2

gs  
0.002(0.00014) 0.0007(0.0001) 0.002(0.00014) 266(17) 

BayesB     

2

e  
0.34(0.04) 0.13(0.002) 0.34(0.04) 12745(1213)  

2

c  
2.03(0.12) 0.35(0.011) 2.04(0.13) 11642(1086)  

2

u  
3.25(0.17) 0.53(0.021) 3.25(0.16) 9892(924) 

g  19.31(1.03) 24.14(1.09) 9.47(0.68) 536(65)    

2

gs  
0.02(0.003) 0.0006(0.003) 0.02(0.0004) 493(48)    

g  0.81(0.03) 0.01(0.004) 0.81(0.03) 517(61) 

 6 

 7 

 8 

 9 

 10 
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TABLE S2 1 

Average posterior means (PMEAN), posterior standard deviations (PSD), posterior medians (PMED), and effective 2 

sample size (ESS) for residual variance (
2

e  ), cage variance (
2

c  ), polygenic variance (
2

u  ) and key hyperparameters 3 

(  ,
2s , g , t and 

2

t ) based on ante-BayesA and ante-BayesB analyses of training data subsets derived from 10 4 

different partitions of the heterogeneous stock mice dataset. Empirical standard deviations across the 10 partitions are 5 
provided in parentheses. 6 

Parameter PMEAN PSD PMED ESS 

Ante-BayesA      

2

e  
0.32(0.04) 0.14(0.002) 0.32(0.03) 2517(134) 

2

c  
2.01(0.13) 0.34(0.012) 2.02(0.13) 2483(128) 

2

u  
3.22(0.14) 0.53(0.03) 3.21(0.14) 2357(122) 

  
15.54(1.32) 21.23(1.54) 7.27(0.46) 185(26) 

2s  
0.001(0.0004) 0.0006(0.00005) 0.001(0.0004) 144(20) 

t  
0.030(0.002) 0.0139(0.004) 0.030(0.001) 2561(52) 

2

t  
0.037(0.004) 0.010(0.0003) 0.034(0.004) 986(43) 

Ante-BayesB     

2

e  
0.34(0.04) 0.15(0.004) 0.33(0.04) 9512(765) 

2

c  
2.02(0.12) 0.39(0.017) 2.01(0.10) 9134(726) 

2

u  
3.23(0.15) 0.52(0.03) 3.22(0.14) 9038(689) 

  
18.21(1.04) 22.46(1.22) 9.26(0.74) 376(33) 

2s  
0.14(0.05) 0.32(0.18) 0.07(0.15) 259(21) 

  
0.80(0.04) 0.01(0.004) 0.79(0.03) 343(32) 

t  
0.02(0.003) 0.011(0.002) 0.02(0.004) 1480(49) 

2

t  
0.032(3e-3) 0.05(2e-4) 0.031(3e-3) 638(41) 
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TABLE S3 1 

Average posterior means for residual variance (
2

e  ), polygenic variance (
2

u  ),  key hyperparameters ( g ,
2

gs , and g2 

) based on BayesA and BayesB analyses and key hyperparameters (  ,
2s , g , t and 

2

t )  based on ante-BayesB and 3 

ante-BayesA analyses for 4 different traits using Hickey and Gorjanc (2011) benchmark data. Empirical standard 4 
deviations across 9 replicates are provided in parentheses. 5 

 Trait 1 Trait 2 Trait 3 Trait 4 

anteBayesB     
2

e  
0.834(0.019) 1.348(0.125) 0.593(0.015) 0.939(0.038) 

2

u  
0.131(0.017) 0.161(0.033) 0.101(0.010) 0.144(0.020) 

  
28.043(1.841) 15.707(2.430) 22.941(2.158) 17.792(2.953) 

2s  
7.13e-4(4.63e-5) 1.34e-3(1.74e-4) 4.40e-4(5.30e-5) 9.14e-4(8.21e-5) 

  
0.789(0.016) 0.834(0.015) 0.771(0.017) 0.826(0.019) 

t  
0.032(0.011) 0.033(0.009) 0.011(0.015) 0.013(0.016) 

2

t  
0.038(0.002) 0.034(0.001) 0.031(0.006) 0.046(0.009) 

BayesB     

2

e  
0.833(0.020) 1.339(0.123) 0.591(0.015) 0.937(0.040) 

2

u  
0.108(0.017) 0.141(0.034) 0.085(0.010) 0.114(0.012) 

g  31.643(1.623) 23.475(3.750) 33.536(2.501) 27.203(3.674) 

2

gs  
8.23e-4(5.60e-5) 1.97e-3(3.21e-4) 5.31e-4(6.75e-5) 4.91e-3(3.71e-3) 

g  0.826(0.011) 0.861(0.015) 0.823(0.017) 0.871(0.020) 

anteBayesA     

2

e  
0.827(0.020) 1.339(0.124) 0.590(0.015) 0.935(0.040) 

2

u  
0.157(0.030) 0.208(0.051) 0.143(0.018) 0.169(0.030) 

  
22.556(1.192) 12.501(2.840) 20.909(1.194) 14.941(3.003) 

2s  
6.40e-5(1.45e-5) 6.84e-5(1.91e-5) 2.22e-5(1.06e-5) 4.85e-5(1.81e-5) 

t  
0.021(0.013) 0.007(0.020) 0.002(0.016) 0.021(0.025) 

2

t  
0.035(0.003) 0.022(0.005) 0.032(0.002) 0.027(0.004) 

BayesA     

2

e  
0.829(0.019) 1.338(0.124) 0.592(0.015) 0.939(0.040) 

2

u  
0.099(0.015) 0.123(0.034) 0.071(0.009) 0.097(0.012) 

g  23.871(2.033) 14.639(3.147) 23.032(2.832) 15.882(3.812) 

2

gs  
1.05e-4(8.70e-6) 1.22e-4(1.68e-5) 6.33e-5(7.23e-6) 8.30e-5(1.61e-5) 

 6 
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TABLE S4 1 

Average effective sample size for residual variance (
2

e ), polygenic variance (
2

u  ), key hyperparameters ( g ,
2

gs , and 2 

g ) based on BayesA and BayesB analyses and key hyperparameters (  ,
2s , g , t and 

2

t )  based on ante-BayesB 3 

and ante-BayesA analyses for 4 different traits using Hickey and Gorjanc (2011) benchmark data. Empirical standard 4 
deviations across 9 replicates are provided in parentheses. 5 

 Trait 1 Trait 2 Trait 3 Trait 4 

anteBayesB     

2

e  
4910(879) 4883(757) 6139(1065) 4163(599) 

2

u  
1423(317) 905(131) 1164(174) 961(177) 

  
136(12) 157(25) 125(10) 146(24) 

2s  
108(7) 111(9) 113(12) 121(19) 

  216(19) 236(24) 210(20) 249(25) 

t  
168(29) 184(35) 150(26) 132(27) 

2

t  
241(46) 302(63) 207(45) 225(53) 

BayesB     

2

e  
3058(541) 4814(1181) 3462(555) 3354(344) 

2

u  
1056(238) 968(284) 993(154) 836(85) 

g  137(6) 162(18) 127(5) 128(13) 

2

gs  
138(4) 122(28) 119(16) 126(16) 

g  264(36) 347(41) 297(26) 275(39) 

anteBayesA     

2

e  
4887(1131) 6352(1900) 9318(1823) 5667(1638) 

2

u  
426(64) 1429(1026) 782(225) 810(321) 

  
105(4) 164(48) 101(8) 122(25) 

2s  
114(9) 120(34) 107(20) 118(24) 

t  137(10) 110(4) 101(18) 107(10) 

2

t  
191(25) 273(66) 201(25) 259(51) 

BayesA     

2

e  
2794(342) 4212(1053) 2986(402) 2541(200) 

2

u  
677(93) 566(111) 642(77) 494(38) 

g  114(6) 211(69) 123(4) 229(65) 

2

gs  
150(14) 187(58) 145(11) 183(42) 
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