
Assumption of Existing Approximation Methods for Multiple Testing Correction

Figure S1 illustrates the correlation structures of genotype data in yeast segregants (BREM et al. 2005) (Figure S1(a-

b)), mouse inbred strains (MCCLURG et al. 2007) (Figure S1(c-d)), and rare variants in human population (FRAZER

et al. 2007) (Figure S 1(e-f)). More details of these three datasets have been discussed in the Results Section. The

yeast segregants data is a typical genetic dataset from a cross of inbred strains where markers within a chromosome are

highly correlated (Figure S1 (a)) and form an approximate banding structure (Figure S1 (b)). Thus this dataset satisfies

the assumptions needed for the approximation methods. In contrast, we do not observe such correlation structure in

the data of mouse inbred strains and human rare variants. Both mouse inbred strains and human rare variants data are

commonly encountered in genetic studies. The insufficiency of the approximation methods for these datasets motivates

the recent development of the exhaustive methods that calculate the exact resampling-based p-values.
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Figure S1: Difference between correlation structures in the yeast [(a) and (b)], inbred mouse [(c) and (d)], and human
rare variant [(e), (f)] data sets. (a), (c), (e) compare the correlation density for marker pairs within and between
chromosomes. (b), (d), and (f) are the heat maps of correlation matrices in chromosome 12 of the three data sets.
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Convexity of Commonly Used Statistical Tests

It has been shown that most of the commonly used statistical tests in eQTL studies, such as Pearson’s correlation,

Student’s t-test, analysis of variance (ANOVA F-test), and likelihood ratio test are equivalent for binary genotype data

(GATTI et al. 2009). Without loss of generality, we show that the ANOVA F-test is a convex function of Ȳ1. Recall

that Ȳ1 is defined as follows: for SNP Xn and a resampled phenotype Y k
m, Ȳ1 represents the sum of the phenotype

values of the individuals with rarer alleles (i.e., when Xn equals to 1).

The ANOVA F-test partitions the total sum of squares SST into a between-group sum of squares SSB and a

within-group sum of squares SSW . The F-statistic is F = cSSB/SSW , where c is a fixed constant for a particular

study. Let SST be the total sum of squares. We have that F = cSSB/SSW = cSSB/(SST − SSB). For a given

resampled phenotype vector Y k
m, the F-statistic is a monotone function of SSB . From now on, we will use SSB as our

test statistic. For SNP Xn and resampled phenotype vector Y k
m,

SSB(Xn, Y
k
m) =

Ȳ 2
0

S0
+

Ȳ 2
1

S1
− Ȳ 2

S
,

where Ȳ0 and Ȳ1 are the sums of the phenotype values in Y k
m when Xn equals to 0 and 1, respectively, S0 and S1 are

the numbers of 0’s and 1’s in Xn, respectively, Ȳ is the sum of all phenotype values in Y k
m, and S is the total number

of individuals. Clearly, Ȳ0 + Ȳ1 = Ȳ , S0 + S1 = S, and thus we can rewrite SSB as

SSB(Xn, Y
k
m) =

(Ȳ − Ȳ1)
2

S − S1
+

Ȳ 2
1

S1
− Ȳ 2

S
. (1)

Clearly, SSB(Xn, Y
k
m) is a convex function (more specifically a quadratic function) of Ȳ1.
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Accuracy Evaluation using Synthetic Phenotypes

To further study the accuracy of the selected methods on the inbred mouse data set, we generate three synthetic phe-

notypes whose values follow standard normal, exponential, and uniform distributions. For each synthetic phenotype,

we use the selected methods to correct the p-values. The uncorrected p-values ranges from 1.2× 10−9 to 5.4× 10−7

(normal), 5.4 × 10−12 to 7.6 × 10−8 (exponential), and 2.7 × 10−11 to 2.1 × 10−7 (uniform). After correction (by

100M permutations), the p-values range from 0.00039 to 0.052 (normal), 0.00044 to 0.053 (exponential), and 0.00026

to 0.05 (uniform). Then we apply different methods to estimate the corrected p-values.

Figures S2(a), S2(b), and S2(c) show the results when using the permutation p-values as reference. From these

figures, we can observe a similar trend using the three synthetic datasets to that using the real expression traits data. The

approximation methods are anti-conservative. Moreover, they do not provide accurate estimation for the permutation

p-values. Their performances vary for phenotypes with different distributions. GeoP does not work for exponentially

distributed phenotypes (with all corrected p-values being 0), though it performs better than SLIDE and SimpleM on

the other two distributions. This demonstrates that the distribution of the phenotypes plays an important role in the

performances of the approximation methods.
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(a) Synthetic normally distributed trait

(b) Synthetic exponentially distributed trait (c) Synthetic uniformly distributed trait

Figure S2: Accuracy evaluation of selected methods on synthetic gene expression traits using inbred mouse data set.
(Each line represents the ratio between the corrected p-values and the reference p-values for a method. The reference
p-values are obtained using 100M permutations. An accurate method should yield a ratio of 1. In this figure, the
reference p-values are estimated by permutation test.)
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Computational Efficiency Evaluation when Varying the Size of the Data Set

We randomly sample 1K real gene expression traits for the evaluation. Unless otherwise specified, the default exper-

imental setting is as follows: number of SNPs = 150K, number of traits = 1K, and number of resamplings = 100K.

PLINK is not computationally efficient enough for this setting. However, since its runtime is linear to the number of

resamplings, we estimate its runtime for 100K resamplings by first running it with 100 resamplings, and then multi-

plying the runtime by 1000. We examine the runtimes of REM for three different thresholds of corrected p-values, 1,

0.05, and 0.01. When the threshold is set to be 1, REM will find the corrected p-values for all traits. Otherwise REM

automatically finds the traits whose corrected p-values are less than the threshold. As shown in Figure S3, FastMap

is about two orders of magnitude faster than PLINK. REM further improves the computational efficiency by about

two orders of magnitude. The computational efficiency of REM is dramatically improved when the corrected p-value

threshold decreases, because REM can filter out insignificant traits in a very early stage of the process.

1

10

10
2

10
3

10
4

10
5

10
6

10
7

10
8

70k 90k 110k 130k 150k

ru
n
ti

m
e
 (

se
c
.)

number of SNPs

PLINK(estimated)
FastMap

REM(pt=1)
REM(pt=0.05)
REM(pt=0.01)

(a) Varying the number of SNPs

1

10

10
2

10
3

10
4

10
5

10
6

10
7

10
8

200 400 600 800 1000

ru
n
ti

m
e
 (

se
c
.)

number of phenotypes

PLINK(estimated)
FastMap

REM(pt=1)
REM(pt=0.05)
REM(pt=0.01)

(b) Varying the number of traits

Figure S3: Efficiency evaluation of three exact methods, PLINK, FastMap, and REM, when varying the number of
SNPs and the number of traits in the mouse data set. The y-axis (runtime) is in logarithmic scale. The runtime of
PLINK is estimated based on small scale experiments. See text for more details.
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Pseudo Code of the REM Algorithm

Algorithm S1: REM - Rapid and Exact Multiple testing correction by resampling
Input: SNPs {X1, X2, · · · , XN}, gene expression traits {Y1, Y2, · · · , YM}, number of resamples K, and

desired resampling-based p-value threshold pt.
Output: Significant gene expression traits, i.e., the ones whose resampling-based p-values are no greater than

pt.

index SNPs {X1, X2, · · · , XN} by the two-layer indexing structure;1

for every Ym (1 ≤ m ≤ M) do2

scan all SNPs to find maximum statistic TYm ;3

generate resampled phenotype vectors {Y 1
m, Y 2

m, · · · , Y K
m };4

count = 0;5

pres(Ym) = count+1
K+1 ;6

for every Y k
m (1 ≤ k ≤ K) do7

for every e1i (e1i is a first layer entry) do8

if ub(e1i) > TYm then9

for every e2j (e2j is a second layer entry of e1i) do10

if ub(e2j) > TYm then11

for every Xn in entry e2j do12

if T (Xn, Y
k
m) > TYm then13

count = count+ 1;14

pres(Ym) = count+1
K+1 ;15

goto line 23;16

end17

end18

end19

end20

end21

end22

if pres(Ym) > pt then23

goto line 2;24

end25

end26

return Ym as significant;27

end28
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Time Complexity of REM

Supposed that we have S individuals, N SNPs, M Phenotypes, and K Permutations/bootstrapps. In Line 1 of Algo-

rithm S1, the overall time complexity for indexing the SNPs is O(NS). In Line 9, the total number of upper bounds

in the first layer we need to check is (S/2)2/2. The complexity of each check is O(1). So the overall time complexity

for searching the first layer is O(KMS2). In Line 11, in the worse case, each first layer entry has O(S2) second layer

entries. However, the total number of secondary entries cannot be larger than the total number of SNPs N . Thus, the

worst case time complexity for searching the second layer is O(KMN). Moreover, in practice, for a first layer entry,

a second layer indexing is only needed when its number of SNPs is larger than the possible number of second layer

entries. Only a small portion of the first layer entries will actually have the second layer indexing. The overall time

complexity of REM is O(NS +KMS2 +KMN).

Note that the complexity analysis only provides an asymptotic description of the worst case performance of the

algorithm. The actual performance of the algorithm heavily depends on the tightness of the upper bound, which has

been demonstrated by extensive experimental evaluation.
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Applying REM to Large Sample Study through Meta-Analysis

REM can be effectively applied to large sample study through meta-analysis. In a meta-analysis, the samples are

partitioned into several groups. The resampling-based p-values within each group are calculated using REM. The

p-values are then combined by applying Fisher’s method (FISHER 1925).

We simulate data sets of large samples to demonstrate the efficacy of REM. We use SNPs in chromosome 22 of

1000 randomly selected individuals from the genome-wide association study of Schizophrenia (SHI et al. 2009). At

each locus, the heterozygous genotype is combined with the homozygous genotype of major allele. There are 6,679

SNPs of MAF no less than 0.05. The phenotypes Y are simulated by a linear model: Y = Xb + ϵ, where X is the

genotype of a SNP, b is the coefficient, and ϵ is the residual error. In our experiments, b varies from 0.3 to 0.7, and ϵ

follows a standard Gaussian distribution.

The square of Pearson’s correlation, R2, is used as the test statistic. We denote the maximum R2 of the origi-

nal phenotype to be r20 . The permutation p-value across the 1000 individuals is calculated as the proportion of the

permutations with maximum R2 larger than r20 .

For meta-analysis, we randomly partitioned the data into two groups, each of which has 500 samples. In each

group, we calculated the permutation p-value as the proportion of the permutations whose maximum R2 are larger

than fr20 , where f is a constant. We then apply Fisher’s method to combine the permutation p-values of every group

to obtain the meta permutation p-value.

We repeat the above simulation 1000 times and compare the permutation p-values from the whole group (the 1000

individuals) to the meta permutation p-values. Figure S4 depicts that they are highly correlated. Specifically, when the

factor f equals to 2.0 (red points in the figure), the correlation is 0.99.

Meta-analysis using 5 and 10 groups are also performed. The results are similar to that of 2 groups. In particular,

the correlation is 0.98 for 5 groups, and 0.96 for 10 groups.

The nearly perfect correlation between the permutation p-value (of the whole group) and the meta permutation

p-value enables us to apply REM to studies with large samples effectively. Specifically, we first partition the samples

into smaller groups and apply REM to get the permutation p-values for each group. We then combine these p-values

by the Fisher’s method to get a meta permutation p-value. Finally, we map the meta permutation p-value to the original

permutation p-value following the estimated relationship (e.g., the line corresponding to factor 2 in Figure S4) between

these two values. Note that the relationship between the original permutation p-value and the meta permutation p-value

can be estimated by using a small number (e.g., tens) of phenotypes.

The exact value of the factor f is not essential to the success of our method. This is because, for any given factor f ,

we can always estimate the relationship between the meta permutation p-value and the original permutation p-value.

For example, the three lines in Figure S4 correspond to three different values of f . Any one of them can be used to
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map between the two p-values. In theory, however, it is interesting to investigate whether there exists an optimal f

value that gives the highest correlation between the two p-values. This is among our future research directions.
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Figure S4: Relationship between the combined p-values and the original p-values
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