Supporting Material

NMR Observable-Based Structure Refinement of DAP12-NKG2C Activating Immunoreceptor Complex in Explicit Membrane

Xi Cheng and Wonpil Im

Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence KS, USA

System	# of water molecules	# of detergents/ lipids	# of ions	# of atoms	Box size (Å ³)
Micelle	16,476	13 SDS, 130 TPC	55 K ⁺ , 44 Cl ⁻	60,230	83.8×83.8×83.8
Bilayer	7,411	129 DMPC	19 K ⁺ , 18 Cl ⁻	38,937	65.6×65.6×87.3

 Table S1
 System information

	PDB:2L35		Micelle		Bilayer	
Structural element	D (Å)	$\Omega\left(^{\circ} ight)$	$D(\text{\AA})$	$\Omega\left(^{\circ} ight)$	$D(\text{\AA})$	Ω (°)
DAP12-1 and NKG2C	9.6±0.4	3.6±1.8	9.9±0.5	3.9±1.8	9.9±0.3	4.0±2.2
DAP12-2 and NKG2C	11.0±0.4	10.9±2.8	10.6±0.6	11.8±2.5	10.4±0.7	10.7±2.2
DAP12-1 and DAP12-2	9.2±0.4	12.5±1.7	9.4±0.6	10.8±2.8	9.7±0.4	11.3±0.3

Table S2 Orientation of DAP12-NKG2C transmembrane helix complex in terms of helix-helix distance (D) and crossing angle (Ω).

Figure S1 The average number of violated NOE distance restraints in the different systems with a cutoff value of 0.5 Å. 15 structures with the least violations were selected for the restrained MD simulations.

Figure S2 Relative rotation angles of Asp¹⁶ in DAP12. (A) The top view of one representative structure from the micelle systems. The rotation angles were calculated by aligning DAP12's principal plane to the *y*-*z* plane, keeping the NKG2C above the principal plane, and measuring the angles of the geometrical center of DAP12-2 Asp¹⁶ side-chain oxygen atoms (A_I) from the DAP12-2 (O_I) relative to the principal plane (similarly for DAP12-1 Asp¹⁶). If the angle is negative, this Asp¹⁶ is below the DAP12 principal plane and outside the interface. (B) Average DAP12 Asp¹⁶'s relative rotation angle in different systems (PDB:2L35: white, micelle: gray, bilayer: black).

Figure S3 The distance between the polar groups of DAP12 Asp¹⁶s and NKG2C Lys⁵² in the different systems (PDB:2L35: white, micelle: gray, bilayer: black). The distance is between the geometrical center of one DAP12 Asp¹⁶ side-chain oxygens and the NKG2C Lys⁵² side-chain nitrogen.

Figure S4 Water accessible surface area of DAP12 Asp¹⁶ in the different systems (PDB:2L35: white, micelle: gray, bilayer: black).

Figure S5 The interaction network at Asp¹⁶-Thr²⁰-Lys⁵² in (A1) PDB:2L35, (A2) the micelle system, and (A3) the bilayer system, respectively. The H-bond is defined by $d \le 2.8$ Å and 120° $\le \theta \le 180^\circ$, where *d* is the distance between donor and acceptor atoms, and θ is the H-bond angle. The donors are HZ1/HZ2/HZ3 of NKG2C Lys⁵² side chain, HG1 of DAP12-1/DAP12-2 Thr²⁰ side chain, and the acceptors are OG1 of DAP12-2 Thr²⁰ side chain, OD1/OD2 of DAP12-1 Asp¹⁶ side chain (CHARMM atom types). The black dotted line represents the salt bridges. The magnate dotted line shows the all-possible putative H-bonds. In the refined structures, the NKG2C Lys⁵² can form two H-bonds maximally. The frequency of forming those H-bonds in the different systems (PDB:2L35: white, micelle: gray, bilayer: black) are shown in (B).

Figure S6 Top and side views of the DAP12-NKG2C complex showing the water molecules (*spheres*) near the key interfacial residues (*sticks*) in (A1, B1) micelle or (A2, B2) bilayer systems. All other water molecules and the protein side chains are omitted for clarity.

Figure S7 The relationship between the number of water molecules near NKG2C Lys⁵² and DAP12-1 Asp¹⁶ and the salt bridge formation between NKG2C Lys⁵² and DAP12-1 Asp¹⁶. The salt bridge formation is indicated in the *x* axis by the distance between the NKG2C Lys⁵² side-chain nitrogen and DAP12-1 Asp¹⁶ side-chain oxygens from a MD-refined simulation system that had penetrating water molecules during the simulation. This plot illustrates that the salt bridge is maintained regardless of water molecules near the key polar groups.

Figure S8 Cylinder radial distribution of system components (protein: black, detergent/lipid head group: magnate, detergent/lipid carbon tail: red, water: blue) around the DAP12-NKG2C complex principal axis in the micelle (solid lines) and in the bilayer (dotted lines) systems. In the micelle systems, the principal axis of DAP12-NKG2C was aligned to the *z* axis. In the bilayer systems, the *z* axis corresponds to the membrane normal. The component distributions are similar in the micelle and in the bilayer within the radius of 20 Å.