SUPPLEMENTAL INFORMATION 1

Pathogenicity and infection cycle of *Vibrio owensii* in larviculture of ornate spiny lobster (*Panulirus ornatus*)

Evan F. Goulden^{1,2}, Michael R. Hall¹, David G.Bourne¹, Lily L. Pereg², and Lone Høj^{1*}

¹ Australian Institute of Marine Science, Townsville, Queensland, Australia, 4810.

²Research Centre for Molecular Biology, School of Science and Technology, University of New England, Armidale, New South Wales, Australia, 2351.

SUPPLEMENTAL METHODS

Transconjugation. Donor, helper and recipient strains were cultured in LB broth with 40 μ g mL⁻¹ kanamycin (for helper and gfp-donor) or LB20 broth (5 g L⁻¹ yeast extract, 10 g L⁻¹ neutralized peptone, 20 g L⁻¹ NaCl; for *V. owensii* DY05) for 24 h at 30°C before subculture in the respective media for a further 16 h. Two hundred and fifty microlitres of each helper, donor and recipient subculture were combined in a microfuge tube, centrifuged (5200 g for 5 min) and the pellet resuspended in 200 μ L 30°C LB20 without antibiotics. Fifty microlitres of the mixed culture was spot inoculated onto LB20 agar (5 g L⁻¹ yeast extract, 10 g L⁻¹ neutralized peptone, 20 g L⁻¹ NaCl, 1.5% agar) and incubated for 24 h at 30°C. The mixed bacterial colonies were streak inoculated onto selective LB20 agar plates (supplemented with 40 μ g mL⁻¹ kanamycin and 50 μ g mL⁻¹ colistin) and incubated for 24 h at 30°C. Fluorescent transconjugant colonies were detected using a blue light transilluminator and re-streaked on *Vibrionaceae*-selective thiosulfate citrate bile sucrose agar plates (TCBS). TCBS-viable colonies were re-checked under blue light to substantiate gfp expression. Isolates were cryopreserved at -80°C in 30% glycerol with LB20 supplemented with 40 μ g mL⁻¹ kanamycin.

Expression of gfp. *V. owensii* DY05[gfp] was assessed for stable expression of gfp by continuous subculture in media without antibiotic selection pressure. DY05[gfp] was precultured on selective LB20 agar for 24 h at 28°C, and in triplicate, a single fluorescent colony was inoculated with 5 mL MB without antibiotics and cultured for 24 h (28°C, 170 rpm). The cultures were continuously subcultured in MB by transferring a 100 µL aliquot to 5 mL of MB every 24 h. Subcultures were sampled by spiral plating (Eddy Jet; IUL) on marine agar (MA; Becton, Dickinson and Company), incubation overnight (28°C) and enumeration by an automatic colony counter (Flash and Grow v1.2; IUL).

Growth of transconjugants. The growth curve of DY05[gfp] was compared to wild type *V. owensii* DY05 using a modified microgrowth assay (1). *V. owensii* DY05 and DY05[gfp] were revived on agar media as described previously, colony material was suspended in 2 mL PBS (8 g L⁻¹ NaCl; 0.2 g L⁻¹ KCl; 1.44 g L⁻¹ Na₂HPO₄; 0.24 g L⁻¹ KH₂PO₄; pH 7.2) and suspensions were adjusted to absorbance OD_{600nm} 0.1 (Nanodrop ND1000). Total viable counts (expressed as CFU mL⁻¹) were determined for each bacterial strain by spiral plating as described previously. MB was inoculated with PBS suspensions of *V. owensii* DY05 or DY05[gfp] at an initial concentration of 1 x 10³ CFU mL⁻¹ in a NuncTM (NUN167008) 96-well microtitre plate (final well volume 200 µL). Treatments were performed in hextuplicate well sets. Perimeter rows and columns were loaded with 200 µL sterile milli-Q water to minimize evaporative loss and plate covers were made hydrophilic by treatment with 0.1% Triton X-100 in 20% ethanol to smooth condensation. Plates were sealed with parafilm and incubated at 28°C with agitation (170 rpm) and growth of the strains was monitored by absorbance (OD_{595nm}) with a Wallac Victor² 1420 multilabel counter. Measurements were adjusted by subtracting the average background noise generated from a MB control.

REFERENCES

 Brewster, J.D. 2003. A simple micro-growth assay for enumerating bacteria. J. Microbiol. Meth. 53: 77-86.