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Supplementary Table 1: New features to make PhymmBL more flexible and easier
to use include the following. Beyond the major items listed here, a collection of
minor bug fixes and performance improvements is documented in the release
history on PhymmBL's website.

= Update RefSeq data: The initial release of the program allowed users to
update their local database only by completely overwriting the existing data
with a current copy of RefSeq's bacterial and archaeal collection, rebuilding
all IMMs, recomputing all supplementary data structures and taxonomic
metadata from scratch. New options have been added to the installer script
to give users the option to refresh their local databases with only those
elements of the current RefSeq collection that have been added or updated
since they first installed (or last updated) the software, greatly easing
computational and temporal burdens associated with maintaining a current
local database.

= Mac OS is now formally supported.

= A script to manually regenerate the local BLAST database has been
included in the distribution. This is useful for users who want to create
models for multiple custom genomes without rebuilding the BLAST database
after each addition.

= The output format of the Phymm component of PhymmBL has now been
coded so as to reduce the size of raw output files by more than an order
of magnitude over the original.

= We have standardized PhymmBL's internal, ad hoc system for resolving
discrepancies between species names and taxonomic data given in GenBank
sequence files and the corresponding data present in the global NCBI
taxonomy, from which the taxonomic labels used in PhymmBL's predictions
are ultimately derived.

Supplementary Table 2: List of genomes added to PhymmBL for the woolly
mammoth classification experiment.

| Species \ Common name
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Arabidopsis thaliana Thale cress
Canis lupus familiaris Dog

Equus caballus Horse

Homo sapiens Human

Mus musculus House mouse
Oryza sativa Rice
Saccharomyces cerevisiae Yeast

Supplementary Note 1: Comparisons to recent methods on classification of
short reads

Two recent papers*> describe new methods (or new versions of existing methods)
aimed at classification of short reads. In most cases and for most read lengths,
PhymmBL remains more accurate than these methods. In one recent paper#, a new
method called RAIphy was introduced and compared to PhymmBL. Fig. 5 reports
that PhymmBL performs better for read lengths of 100 and 400 bp, and that a very
slight improvement over PhymmBL was observed for RAlphy for lengths of 800 and
1000 bp. The absolute accuracy numbers they present for PhymmBL are
considerably lower than we reported in our original paper?, however, and it is
unclear to us why the authors were unable to obtain better results than what was
reported.

In another paper describing a new version of PhyloPythia? called PhyloPythiaS4, Fig.
1 (comparing PhymmBL, MEGAN3, and PhylopythiaS), shows that PhymmBL clearly
outperforms MEGAN on longer contigs (with respect to accuracy reported for
shorter read lengths, please see below for a discussion of comparisons between
PhymmBL and other methods which don’t label all input reads). For short reads,
Supplementary Tables 1 and 13 show again that PhymmBL outperforms the
PhylopythiaS system on many read lengths and for multiple levels of the
phylogenetic classification system: e.g., in Supplementary Table 1, describing results
on simulated acid mine data, PhymmBL outperforms both MEGAN and PhylopythiaS
at the family, order, class, and phylum levels. Most of the other data in the paper
describing PhyloPythiaS refers to results from long contigs, which are tens to
hundreds of times longer than single reads. Single reads constitute the optimal
target length for ab initio metagenomics analysis - that is to say, analysis that
doesn’t require assembly prior to classification. This is the length for which
PhymmBL was explicitly designed.

On accuracy comparisons in general, we would like to address some confusion that
has repeatedly arisen since PhymmBL'’s release, due in large part to two common
misapprehensions of PhymmBL’s design philosophy. The first issue concerns
comparisons between other methods and Phymm (not PhymmBL). Phymm was
never intended for use by itself: as we made clear in the article describing
PhymmBL’s release, Phymm, alone, does not classify reads as accurately as BLAST
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does. The only reason to use Phymm at all, then, is that in concert with BLAST -i.e.,
when used as part of the hybrid method PhymmBL - better accuracy is produced
than when using either method on its own. Accuracy comparisons to Phymm alone
are therefore misleading at best. The second cause of confusion concerns reported
accuracy comparisons between PhymmBL, which labels all input reads, and
methods like MEGAN, which do not: below some confidence threshold, reads
classified by the latter group of methods are labeled “unclassified” or “unknown.” It
should be obvious that a direct comparison between PhymmBL and these methods
is a comparison between two sets of results which are not of the same fundamental
type, and are, again, misleading at best. PhymmBL now produces (and has
produced, via up-to-date stable software versions available on the website since
mid-2010) confidence scores for all predictions. Canonical use of PhymmBL
requires that researchers (through methods which are explicitly and deliberately
left to individual users, in order to meet their local research goals, idiosyncratic
statistical preferences, and confidence constraints) identify a threshold within the
range of confidence scores PhymmBL produces, below which all labels must be
considered meaningless. Only once this threshold has been selected - and attention
has been restricted solely to predictions whose confidence scores exceed this
threshold - can comparisons to methods like those mentioned above be considered
fair.

Supplementary Note 2: Parallelization

After extensive testing done both in-house and on other systems by PhymmBL
users, we are now formally supporting parallel processing (specifically,
simultaneous batch processing) of input reads. If you have multiple processors
available and wish to parallelize your classification runs, scoreReads.pl is designed
to allow multiple copies to run in parallel; you can split your input data (FastA
sequences) into as many files as your system can comfortably handle, then run
scoreReads.pl separately (and simultaneously) on each one. This will substantially
improve processing time.

Example scenario: Your sequence data is in a file called "queryReads.fasta". You
have six processors available on your system, and you want to use, say, four of them
for classification.

Break up "queryReads.fasta" into four roughly equally-sized multi-FastA files, say

"queryReads_1.fasta", "queryReads_2.fasta", etc., one for each processor to be used.
Then run scoreReads.pl separately on each of the four input chunks, e.g.:

nohup scoreReads.pl queryReads_1.fasta &
nohup scoreReads.pl queryReads_2.fasta &
nohup scoreReads.pl queryReads_3.fasta &
nohup scoreReads.pl queryReads_4.fasta &
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(The 'nohup' keyword at the beginning of each line directs the system not to kill the
PhymmBL scoring process if you log out or lose your terminal connection before the
process is finished; this is recommended, wherever possible, when launching long-
running processes like PhymmBL. The '&' character at the end will send each
process to the background, so you can regain control of your terminal before the
process is finished, which is necessary if you don't want to open four separate
terminals just to launch four parallel processes.)

In addition to single-machine batch processing, we have successfully deployed
PhymmBL to a multi-machine computing grid, for more automated and more
powerful parallel classification than can be done on a single machine (or for that
matter on a single disk). Since implementation details of each grid or cloud are
different - often in substantial ways - we can only provide a logical outline to this
approach, but we expect that the process will be conceptually straightforward on
most systems:

o Install PhymmBL on a single machine.

o Once installation is finished and all the data comprising the
reference databases has been generated, copy everything in the
installation directory to each of your grid nodes, preferably on a locally-
accessible scratch disk to reduce data latency.

o Separate your input reads into however many components you
feel are appropriate, creating a new multi-FastA file for each
component.

o Schedule your batch job using whatever protocols are offered by

your local grid software: each process in the batch job should

0 copy one component to the local scratch drive,

O classify it by calling the local copy of scoreReads.pl, and

0 move the result files for the current component back to a central

location for later aggregation once the batch job has finished.

o]
Supplementary Note 3: Computational resources used in the classification of
the mammoth bone metagenome

The entire set of 2,278,901 input reads (avg. length 276 bp) was classified in
approximately 2.5 days, on a grid consisting of 24 identical machines, with
approximately 20 components (chunks of input reads) being simultaneously
processed at any given time. PhymmBL was deployed to this grid as described in
Supplementary Note 2. Each 12-core machine in the grid ran 64-bit Linux as its
primary operating system and computing environment. 8GB of memory and one
(2GHz AMD Opteron) core were allocated to each process.
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Supplementary Note 4: Usage notes and algorithm details for confidence
scores

When interpreting results, confidence scores should not be taken to be
probabilities: as an example, it is not guaranteed that 75% of all predictions which
are assigned a confidence score of 0.75 will be correct. In fact, the functions which
generate PhymmBL’s confidence scores were deliberately designed to be more
conservative than actual probabilities in most circumstances: the true proportion of
accurate predictions in such a set is expected to be greater than 75%. Confidence
scores can, however, reliably serve as linearly-scaled estimators of accuracy. For
example, when considering different portions of the same input set, one group of
predicted labels with confidence scores of 0.8 will contain approximately twice as
many correct predictions as a different group with scores of 0.4.

Scores are output from five distinct polynomial functions of two variables, namely
read length and raw PhymmBL score. These polynomials (one each for the phylum,
class, order, family and genus classification levels) were determined via iterative 3D
curve fitting, on result data generated from synthetic classification runs, where the
correct labels were known in advance so that predictive accuracy could be directly
measured, plotted and fitted as a function of read length and raw score.

The polynomial function defining confidence score estimation for genus-level
predictions is given below; the others have the same form, with their constants
adjusted to fit the corresponding accuracies observed for each taxonomic level.

12
0.86 [—rawScore —(1.25 x readLength — 550)16 readLength] 8
o +
15x10" readLength
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