Supporting Information

Photoaffinity Labeling of Ras Converting Enzyme using Peptide Substrates that Incorporate Benzoylphenylalanine (Bpa) Residues: Improved Labeling and Structural Implications

Kelly Kyro,^{*a,b*} Surya Manandhar,^{*c*} Daniel Mullen,^{*a,b*} Walter K. Schmidt^{*c*} and Mark D. Distefano^{*a,b**}

^aDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455

^bDepartment of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455

^cDepartment of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602

*Corresponding author. Tel.: 612-624-0544; fax: 612-626-7541. E-mail address: diste001@umn.edu

Compound Characterization List (6 & 9):

Retention times (t_R) are based on analytical RP-HPLC using a linear gradient from 100% H₂O to 40% H₂O/60% CH₃CN over 60 min and a flow rate of 1.0 mL/min. Peptide concentrations were determined by UV spectroscopy: $\varepsilon_{349} = 18,000 \text{ mM}^{-1} \cdot \text{cm}^{-1}$.

Abz-KSKTKC(C10BP)K(Dnp)IM, 6.

Reaction scale: 7.4 µmol, yield: 1.3 mg (10%), purity by RP-HPLC: 92.6%, $t_{\rm R} =$ 57.5 min., ESI-MS (m/z): [M+2H]²⁺ calcd for C₈₂H₁₂₂N₁₆O₁₉S₂ 849.4251, found 849.9947; [M+3H]³⁺ calcd for C₈₂H₁₂₃N₁₆O₁₉S₂ 566.6192, found 566.9992.

Biotin-K(Dde)KSKTKC(C10BP)K(Dnp)IM, 9.

Reaction scale: 5.0 µmol, yield: 5.3 mg (44%), purity by RP-HPLC: 96.2%, $t_{\rm R}$ = 66 min., ESI-MS (m/z): [M+2Na]²⁺ calcd for C₁₁₅H₁₇₉N₂₁O₂₈S₃Na₂ 1222.1096, found 1221.8616; [M+2Na+H]³⁺ calcd for C₁₁₅H₁₈₀N₂₁O₂₈S₃Na₂ 815.0730, found 814.9139; [M+2Na+2H]⁴⁺ calcd for C₁₁₅H₁₈₁N₂₁O₂₈S₃Na₂ 611.5548, found 611.4392.

Compound Characterization List (11-14):

Retention times (t_R) are based on analytical RP-HPLC using a linear gradient from 100% H₂O to 30% H₂O/70% CH₃CN over 70 min and a flow rate of 1.0 mL/min. Peptide concentrations of **11-14** were determined by mass.

Biotin-PEG₃-Bpa-SKTKC(Fr)VIM, 11. Purity by RP-HPLC: 91.0%, $t_{\rm R}$ = 64.5 min., ESI-MS (m/z): [M+2H]²⁺ calcd for C₈₉H₁₄₆N₁₄O₁₈S₃ 897.5045, found 897.6320.

Biotin-PEG₃-K-Bpa-KTKC(Fr)VIM, 12. Purity by RP-HPLC: 81.3%, $t_{\rm R} = 61.5$ min., ESI-MS (m/z): $[M+2H]^{2+}$ calcd for C₉₂H₁₅₃N₁₅O₁₇S₃ 918.7622, found 918.6713; $[M+3H]^{3+}$ calcd for C₉₂H₁₅₄N₁₅O₁₇S₃ 612.8440, found 612.7869.

Biotin-PEG₃-KS-Bpa-TKC(Fr)VIM, 13. Purity by RP-HPLC: 74.4.%, $t_R = 64 \text{ min.}$,

ESI-MS (m/z): $[M+2H]^{2+}$ calcd for $C_{89}H_{146}N_{14}O_{18}S_3 897.5045$, found 897.6381.

Biotin-PEG₃-KSK-Bpa-KC(Fr)VIM, 14. Purity by RP-HPLC: 91.4%, $t_{\rm R} = 64$ min., ESI-MS (m/z): $[M+2H]^{2+}$ calcd for $C_{91}H_{151}N_{15}O_{17}S_3$ 911.0282, found 911.6836; $[M+3H]^{3+}$ calcd for $C_{91}H_{152}N_{15}O_{17}S_3$ 608.1682, found 608.1268.

Figure 1. ESI-MS-MS of full unprocessed substrate **6** and the Rce1p-catalyzed proteolysis product **10**. (A) Benzophenone-modified substrate **6**. (B) Benzophenone-modified proteolysis product **10**. (K, lysine fragment; BP, benzophenone fragment, $(C_{14}H_{11}O^{+})$; -b, loss of benzophenone fragment; -c, loss of C₅-prenyl benzophenone, $(C_{19}H_{20}O_2)$; d, benzophenone-H₂O, $(C_{14}H_{13}O_2)$; -d, loss of benzophenone-H₂O; -e, loss of C₁₀-prenyl benzophenone, $(C_{24}H_{28}O_2)$; -h, loss of H₂O; -i, loss of NH₃).

Table 1

Summary of ESI-MS-MS for unprocessed substrate **6** and the Rce1p-catalyzed proteolysis product **10** (K, lysine fragment; BP, benzophenone fragment, (3-benzoylphenyl)methylium ($C_{14}H_{11}O^+$); -b, loss of benzophenone fragment; -c, loss of (*E*)-(3-(((2-methylbut-2-en-1-yl)oxy)methyl)phenyl)(phenyl)methanone ($C_{19}H_{20}O_2$); d, benzophenone-H₂O, (3-(hydroxymethyl)phenyl)(phenyl)methanone ($C_{14}H_{13}O_2$); -d, loss of benzophenone-H₂O; -e, loss of (3-((((2*E*,6*E*)-2,6-dimethylocta-2,6-dien-1-yl)oxy)methyl)phenyl)(phenyl)methanone ($C_{24}H_{28}O_2$); -h, loss of H₂O; -i, loss of NH₃).

Peptide	6		10	10		
lon	Calc.	Obs.	Calc.	Obs.		
[M+H] ⁺ (-b, -h)			947.54	947.67		
[M+H] ⁺ (-e)	1351.65	1351.66	813.43	813.58		
[M+2H] ²⁺			580.31	580.39		
[M+2H] ²⁺ (-h)			571.31	571.39		
[M+2H] ²⁺ (-b)	752.39	752.40				
[M+2H] ²⁺ (-d)	743.88	743.38				
[M+2H] ²⁺ (-e)	676.33	676.33				
[M+2H] ²⁺ (-b, -h)			474.27	474.35		
[M+3H] ³⁺ (-d)	496.26	496.26				
z ₉ ²⁺ (-b)	684.86	684.87				
y ₅			912.49	912.66		
y ₈ (-d)	1238.64	1238.64				
y ₈ (-e)	1104.52	1104.54				
y ₆ (-c)	956.44	956.47				
y ₉ ²⁺	789.91	790.41				
y ₅ (-b, -h)			700.41	700.53		
$y_8^{2+}(-d)$	620.32	619.82				
y ₂	263.14	263.15				
y 1	150.06	150.06	468.22	468.12		
y ₆ ²⁺ (-d, -h)			406.25	406.29		
y ₂ (-d, -i)			368.21	368.30		
y ₃ ²⁺			349.19	349.47		
y ₂ ²⁺ (-d, -i)			184.61	184.12		
C ₁	135.06	135.12	135.06	135.14		
b ₉ (-e)	1202.60	1202.62				
b ₈ (-e)	1089.51	1089.53				
b ₆	692.41	692.43	692.41	692.79		
b ₉ ²⁺ (-e)	601.80	601.80				
b ₅	564.31	564.32	564.31	564.21		
b ₄	463.27	463.29				
b ₄ (-h)			445.26	445.36		
b ₃	335.17	335.18				
b ₂	248.14	248.14	248.14	248.18		
b ₂ (-h)			230.15	230.18		
b ₁	120.10	120.05	120.10	120.07		
a_{3}^{2+}			154.10	154.11		
d	213.09	213.10	213.09	213.14		
BP	195.12	195.08	195.12	195.12		
K			129.10	129.13		

ESI-MS-MS Spectra of Compounds 11-13.

Table 2

Summary of ESI-MS-MS for unprocessed Bpa-containing peptides, **11-14** (-f, loss of farnesyl ($C_{15}H_{25}$); -h, loss of H_2O ; B, biotin fragment, 2-(5-((3aR,4S,6aS)-2-oxohexahydro-1*H*-thieno[3,4-*d*]imidazol-4-yl)pentanamido)ethan-1-ylium ($C_{12}H_{20}N_3O_2S^+$), -B, loss of biotin fragment; -i, loss of NH₃; K, lysine fragment).

Peptide	11		1:	2		13	14	1
lon	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.
[M+2H] ²⁺	897.50	897.66	918.04	918.25	897.50	897.56		
[M+2H] ²⁺ (-f)	795.41	795.45	815.94	816.13	795.41	795.44	808.93	808.93
[M+3H] ³⁺							607.68	607.83
[M+3H] ³⁺ (-f)							539.62	539.64
У ₈	1113.68	1113.69	1277.74	1277.79	1236.68	1236.72		
y ₈ (-h)	1095.66	1095.72						
y ₈ (-B,-f)					1032.48	1032.44		
y ₈ (-f)	909.48	909.45					1059.54	1059.51
y ₂	263.14	262.98	263.14	263.07	263.14	263.12	263.14	263.09
y 1							150.06	150.03
C ₅	1014.53	1014.44			1014.53	1014.48		
b ₉ (-f)	1440.76	1440.80	1481.82	1482.02	1440.76	1440.80		
b ₉ (-B)	1375.83	1376.01						
b ₈ (-f)	1327.68	1327.71	1368.74	1368.85	1327.68	1327.72	1354.72	1354.81
b ₈ (-B)	1262.74	1262.82						
b ₇ (-f)	1228.61	1228.68	1269.67	1269.67	1228.61	1228.60	1255.66	1255.67
b ₉ (-B,-f)	1171.64	1171.62			1171.64	1171.64	1198.69	1198.63
b ₆	1125.60	1125.57	1166.66	1166.57	1125.60	1125.60	1152.65	1152.63
b ₆ (-h)					1107.59	1107.52		
b ₈ (-B,-f)	1058.56	1058.52			1058.56	1058.56		
b ₅	997.50	997.47	1038.56	1038.42	997.50	997.48	1024.55	1024.64
b ₅ (-h)					979.50	979.48		
b ₄			937.52	937.50	896.46	896.44		
b ₉ ²⁺			843.51	843.64				
b ₃								
b ₉ ²⁺							836.50	836.50
b ₈ ²⁺			786.96	787.09				
b ₉ ²⁺ (-f)			741.42	741.52	720.88	720.88	734.40	734.36
$b_{8_{2}}^{2+}(-f)$			684.87	684.97	664.34	664.36	667.86	667.84
$b_{7_{2}}^{2+}(-f)$					614.80	614.84		
$b_{6_{2+}}^{2+}(-f)$			583.84	583.90				
b ₆ ²⁺							576.82	576.82
b ₂			558.33	558.22	558.33	558.28	558.33	558.23
b ₉ ³⁺ (-f)							489.94	490.00
b ₁	430.20	430.14	430.20	430.13	430.20	430.16	430.20	430.14
b ₃ (-B)			540.30	540.23	376.24	376.24	376.24	376.08
b ₅ ^{-'} (-B,-h)			376.22	376.10				
D ₂ (-B)					289.21	289.16		
$b_2^{-1}(-1)$					271.16	271.12		
a ₈ (-1)	1299.68	1299.69	707 40	707 50	700.00	700.00	700 43	700.00
$a_9^{(-1)}$	706.88	706.92	/2/.42	/27.59	706.88	706.92	/20.41	720.38
a ₈ (-ī)	070 40	070.00	670.88	670.90	070 40	070 40	070.40	070.01
В	270.13	270.09	2/0.13	270.14	270.13	2/0.12	270.13	270.04
ĸ			129.10	129.11	129.10	129.08		

Figure 2. ESI-MS-MS of full unprocessed Substrate 14 and the Rce1p-catalyzed proteolysis product 15. (A) BPA-containing substrate 14. (B) Bpa-containing proteolysis product 15. -f, loss of farnesyl ($C_{15}H_{25}$); -h, loss of H_2O ; +h, gain of H_2O ; B, biotin fragment, ($C_{12}H_{20}N_3O_2S^+$), -B, loss of biotin fragment; -i, loss of NH₃.

Table 3

Summary of ESI-MS-MS for unprocessed substrate **14** and the Rce1p-catalyzed proteolysis product **15** (-f, loss of farnesyl ($C_{15}H_{25}$); -h, loss of H_2O ; +h, gain of H_2O ; B, biotin fragment, 2-(5-((3aR, 4S, 6aS)-2-oxohexahydro-1*H*-thieno[3, 4-d]imidazol-4-yl)pentanamido)ethan-1-ylium ($C_{12}H_{20}N_3O_2S^+$), -B, loss of biotin fragment; -i, loss of NH₃).

Peptide	14		•	15	
lon	Calc.	Obs.	Calc.	Obs.	
[M+2H] ²⁺			739.43	739.42	
[M+2H] ²⁺ (-f)	808.93	808.93	637.34	637.32	
[M+3H] ³⁺	607.68	607.83			
[M+3H] ³⁺ (-f)	539.62	539.64			
y ₈ (-f)	1059.54	1059.51			
y 5			920.53	920.52	
y ₅ (-f)			716.34	716.34	
у 3			705.40	705.39	
y ₂	263.14	263.09	454.31	454.31	
y ₅ ²⁺ (-f)			358.67	358.74	
y ₂ (-f)			250.12	250.12	
у 1	150.06	150.03			
b ₈ (-f)	1354.72	1354.81			
b ₇ (-f)	1255.66	1255.67			
b ₉ (-B,-f)	1198.69	1198.63			
b ₆	1152.65	1152.63	1152.64	1152.61	
b ₅	1024.55	1024.64	1024.55	1024.50	
b₅(-h)			1006.54	1006.51	
b ₄			773.46	773.42	
b ₃			645.36	645.33	
b ₉ ²⁺	836.50	836.50			
b ₉ ²⁺ (-f)	734.40	734.36			
b ₈ ²⁺ (-f)	667.86	667.84			
b ₃ (-i)			628.34	628.32	
$b_{6}^{2+}(+h)$			585.83	585.82	
b_6^{2+}	576.82	576.82	576.82	576.81	
b ₂	558.33	558.23	558.33	558.30	
b ₉ ³⁺ (-f)	489.94	490.00			
b ₁	430.20	430.14	430.20	430.20	
b ₃ (-B)	376.24	376.08	376.24	376.20	
a ₉ ²⁺ (-f)	720.41	720.38			
a ₈ ^{∠+} (-f)	663.86	663.87			
В	270.13	270.04	270.13	270.13	

Figure 3. Western blot analysis (left) and densitometric quantification (right) of time course photolabeling of Rce1p using probe **14** detected with anti-HA following SPD and SDS-PAGE separation. Lanes 1-5 correspond to Rce1p-containing membranes (*RCE1-HA*) photolyzed with probe **14** (15 μ M) for 10, 20, 30, 40, and 60 min, respectively. Columns represent densitometric data obtained from three replicate experiments using probe **14** for the indicated amounts of time.