Supplemental Figure 1. Diagram showing differences in first, second, and third order branching in California poppy wild type (left) and *escafl1fl2* plants (right). The terminal flower is yellow, first order flowers are green, second order branches are pink, third order branches are purple.

Supplemental Figure 2. Amino acid alignment of the opium poppy and California poppy FUL-like proteins. FUL-like motif is indicated by the box. Lines below indicate the locations of the primers used to amplify the regions for VIGS constructs from the *PapsFUL-like* genes from opium poppy and the *EscaFUL-like* genes from California poppy. *PapsFL1-PapsFL2* reverse primers are not shown because they bind to the 3'UTR. EcFL Fwd, forward *EscaFL* primer; EcFL Rev, reverse *EscaFL* primer; PapsFL Fwd, forward *PapsFL1-PapsFL2* primers.

Supplemental Figure 3. In situ hybridization controls.

(A) to (C) Controls for opium poppy. (A) *PapsFL1* sense probe. (B) *PapsFL2* sense probe. (C) Expression of *PapsP1* used to test the specificity of the technique in light of the broad expression of *PapsFL1*; results are similar to those obtained by Drea et al. (2007)

(**D**) to (**F**) Controls for California poppy (**D**) *EscaFL* sense probe. (**E**) and (**F**) Expression of *EscaAG* used to test the specificity of the technique in light of the broad expression of *EscaFUL-like* genes; results are similar to those of Zahn et al. (2006). Scale bars: 50 μ m

Supplemental Figure 4. Locus-specific RT-PCR and qRT-PCR using cDNA prepared from organs of VIGS-treated plants.

(A), (C) and (E) RT-PCR analysis of opium poppy plants transformed with (A) TRV2-*PapsFL1*, (C) TRV2-*PapsFL2* and (E) TRV2-*PapsFL1* and TRV2-*PapsFL2* simultaneously, showing preliminary categories of un-silenced (un), mildly (mild), moderately (mod), and strongly (str) silenced plants. Samples were extracted from leaves (l), leaf-like sepals (ls) or fruits (f) and screened for down-regulation of *PapsFL1* and *PapsFl2* as well as presence of the vector (TRV2). Note specific down-regulation of *PapsFL1* in (**A**), specific down-regulation of *PapsFL2* in (**C**) and down-regulation of both copies in (**E**). Samples of wild type leaf (l), sepal (s) and fruit (f) were used for comparison and *ACTIN* was used as a control.

(**B**), (**D**) and (**F**) qRT-PCR of a subset of leaf samples showing the range of silencing (from mildly to strongly down-regulated) of (**B**) *PapsFL1*, (**D**) *PapsFL2* and (**F**) *PapsFL1* and *PapsFL2* simultaneously. Fold change in *PapsFL1* (black bars) and *PapsFL2* (gray bars) expression in samples is shown relative to the wild type leaf gene expression. Error bars show \pm SD among three technical replicates. *GADPH* was used as the endogenous control.

(G) RT-PCR analysis showing preliminary categories of un-silenced (un), mildly (mild), moderately (mod) and strongly (str) silenced tissue samples from California poppy plants transformed with TRV2-*EscaFL1* and TRV2-*EscaFL2*. Samples were collected from the same organs as opium poppy plants. Treated plants were screened for down-regulation of *EscaFL1* and *EscaFL2* and for presence of the vector (TRV2). Note down-regulation of both *EscaFL1* and *EscaFL2*. Similar wild type samples were used for comparison and *UBIQUITIN* was used as a control.

(H) qRT-PCR of a subset of leaf samples showing the range of silencing (from mildly to strongly down-regulated) of *EscaFL1* and *EscaFL2* simultaneously. Fold change in *EscaFL1* (black bars) and *EscaFL2* (gray bars) expression is shown relative to the wild type leaf gene expression. Error bars show \pm SD among three technical replicates. *GADPH* was used as the endogenous control.

Supplemental Figure 5. Protein interactions between PapsFL1 and PapsFL2 as determined by growth on selective SD medium. Opium poppy proteins were cloned into both activation domain (AD) and binding domain (BK) vectors. Within each column corresponding to a interacting pair, the three columns of colonies represent a dilution series (10⁻⁵, 10⁻⁴ and 10⁻³ colony forming units) of each strain grown on SD medium (-HWL, -AWL and -HAWL). The -HWL medium was supplemented with 2.5 to 30mM 3-amino- 1,2,4 –triazole.

Supplemental Figure 6. Range of variation of the leaf-like sepal phenotype in *escafl1-fl2* California poppy plants.

(A) to (C) Slightly abnormal sepals, with leafy edges. In these flowers, floral organs remain trapped inside because sepals are largely fused but not deciduous. Floral cup is visible.

(D) to (I) Strongly abnormal, free (un-fused) sepals with highly dissected leaf-like edges that allow full or partial exposure of the remaining floral organs. Floral cup is present.
(J) to (L) Complete homeotic transformation of sepals into leaf-like organs, where no remnants of the floral cup are observed. Scale Bars: 0.5 cm

Supplemental Figure 1. Diagram showing differences in first, second, and third order branching in California poppy wild type (left) and *escaf11f12* plants (right). The terminal flower is yellow, first order flowers are green, second order branches are pink, third order branches are purple.

Supplemental Figure 2. Amino acid alignment of the opium poppy and California poppy FUL-like proteins. FUL-like motif is indicated by the box. Lines below indicate the locations of the primers used to amplify the regions for VIGS constructs from the *PapsFUL-like* genes from opium poppy and the *EscaFUL-like* genes from California poppy. *PapsFL1 - PapsFL2* reverse primers are not shown because they bind to the 3'UTR. EcFL Fwd, forward *EscaFL* primer; EcFL Rev, reverse *EscaFL* primer; PapsFL Fwd, forward *PapsFL1 - PapsFL2* primers.

Supplemental Figure 3. In situ hybridization controls.

(A) to (C) Controls for opium poppy. (A) PapsFL1 sense probe. (B) PapsFL2 sense probe. (C) Expression of PapsP1 used to test the specificity of the technique in light of the broad expression of PapsFL1; results are similar to those obtained by Drea et al. (2007).

(D) to (F) Controls for California poppy (D) *EscaFL* sense probe. (E) and (F) Expression of *EscaAG* used to test the specificity of the technique in light of the broad expression of *EscaFUL-like* genes; results are similar to those of Zahn et al. (2006). Scale bars: 50 µm

Supplemental Figure 4. Locus-specific RT-PCR and qRT-PCR using cDNA prepared from organs of VIGS-treated plants. (A), (C) and (E) RT-PCR analysis of opium poppy plants transformed with (A) TRV2-*PapsFL1*, (C) TRV2-*PapsFL2* and (E) TRV2-*PapsFL1* and TRV2-*PapsFL2* simultaneously, showing preliminary categories of un-silenced (un), mildly (mild), moderately (mod), and strongly (str) silenced plants. Samples were extracted from leaves (I), leaf-like sepals (Is) or fruits (f) and screened for down-regulation of *PapsFL1* and *PapsFl2* as well as presence of the vector (TRV2). Note specific down-regulation of *PapsFL1* in (A), specific down-regulation of *PapsFL2* in (C) and down-regulation of both copies in (E). Samples of wild type leaf (I), sepal (s) and fruit (f) were used for comparison and *ACTIN* was used as a control. (B), (D) and (F) qRT-PCR of a subset of leaf samples showing the range of silencing (from mildly to strongly down-regulated) of (B) *PapsFL1*, (D) *PapsFL2* and (F) *PapsFL1* and *PapsFL2* simultaneously. Fold change in *PapsFL1* (black bars) and *PapsFL2* (gray bars) expression in samples is shown relative to the wild type leaf gene expression. Error bars show ± SD among three technical replicates. *GADPH* was used as the endogenous control.

(G) RT-PCR analysis showing preliminary categories of un-silenced (un), mildly (mild), moderately (mod) and strongly (str) silenced tissue samples from California poppy plants transformed with TRV2-*EscaFL1* and TRV2-*EscaFL2*. Samples were collected from the same organs as opium poppy plants. Treated plants were screened for down-regulation of *EscaFL1* and *EscaFL2* and for presence of the vector (TRV2). Note down-regulation of both *EscaFL1* and *EscaFL2*. Similar wild type samples were used for comparison and *UBIQUITIN* was used as a control. (H) qRT-PCR of a subset of leaf samples showing the range of silencing (from mildly to strongly down-regulated) of *EscaFL1* and *EscaFL2* simultaneously. Fold change in *EscaFL1* (black bars) and *EscaFL2* (gray bars) expression is shown relative to the wild type leaf gene expression. Error bars show ± SD among three technical replicates. *GADPH* was used as the endogenous control.

	Paps FL1AD	Paps FL2AD	Paps FL1AD	Paps FL2AD	Paps FL1AD	Paps FL2AD	Paps FL1AD	Paps FL2AD
	Paps FL2BK	Paps FL1BK	Paps FL1BK	Paps FL2BK	Paps FL2BK	Paps FL1BK	Paps FL1BK	Paps FL2BK
-WL	•••	•••	•• •	•• •		•••	•••	••
-HWL	• • •	• • •	• • •		•••	•••	$\bullet \bullet \bullet$	\$. 6
-HWL 2.5mM		• • •					5	
-HWL 5mM	• • •	🗢 🦚 😳						
-HWL10mM	en 🥵 🔕							
-HWL20mM		12 14 L				$\bullet \bullet \bullet$		
-HWL30mM		4				•		
-AWL	• • •	• • •	🗶 es G.				000	
-HAWL	•••	••,	۰ به ج		$\bullet \bullet \bullet$			
	3 days			6 days				

Supplemental Figure 5. Protein interactions between PapsFL1 and PapsFL2 as determined by growth on selective SD medium. Opium poppy proteins were cloned into both activation domain (AD) and binding domain (BK) vectors. Within each column corresponding to a interacting pair, the three columns of colonies represent a dilution series (10-5, 10-4 and 10-3 colony forming units) of each strain grown on SD medium (-HWL, -AWL and -HAWL). The -HWL medium was supplemented with 2.5 to 30mM 3-amino- 1,2,4 -triazole.

Supplemental Figure 6. Range of variation of the leaf-like sepal phenotype in escall-fl2 California poppy plants.

(A) to (C) Slightly abnormal sepals, with leafy edges. In these flowers, floral organs remain trapped inside because sepals are largely fused but not deciduous. Floral cup is visible.

(D) to (I) Strongly abnormal, free (un-fused) sepals with highly dissected leaf-like edges that allow full or partial exposure of the remaining floral organs. Floral cup is present.

(J) to (L) Complete homeotic transformation of sepals into leaf-like organs, where no remnants of the floral cup are observed. Scale Bars: 0.5 cm

Supplemental Table 1. Summary of phenotypes identified using VIGS to silence poppy *FUL-like* genes individually and simultaneously

Construct	Phenotypes	N ^o plants
/(effectiveness ^a)		_
TRV2-PapsFL1/ (27/100)	Branched inflorescences	21
_	Overgrowth and shape defects in cauline leaves	6
	Leaf –like sepals	8
	Carpel defects /Premature fruit rupture	4
TRV2-PapsFL2/ (13/80)	Branched inflorescences	10
	Overgrowth and shape defects in cauline leaves	5
	Leaf –like sepals	7
	Carpel defects /Premature fruit rupture	3
TRV2-PapsFL1 and	Delay in reproductive transition	12
TRV2-PapsFL2/ (15/108)	Branched inflorescences	7
_	Overgrowth and shape defects in cauline leaves	5
	Leaf –like sepals	5
	Mosaic green petals	5
	Carpel defects /Premature fruit rupture	5
TRV2-EscaFL ^b (40/120)	Branched inflorescences	40
(10,120)	Leaf –like sepals	40
	Carpel defects /Premature fruit rupture	4

^aeffectiveness: (Total number of plants down-regulated/ Total number of plants transformed) ^bboth constructs downregulated both gene copies therefore data are combined here.

	Primer name	Primer sequence
In Situ Hybridization	PapsFL1- F	GCACCAACTTGATACTTCC
	PapsFL1- R-T7	CTTAATACGACTCACTATAGGGTGATCCCTGATTGCTTTCTT
	PapsFL2- F	AAGAGCTCCAAAATCTAG
	PapsFL2- R-T7	CTTAATACGACTCACTATAGGGAGATACAACATTACATGCA
	PapsPI F	AGTGGAAATTCATGGAAGAGG
	PapsPI R T7	CTTAATACGACTCACTATAGGGAGTTATAGTAGCAGCTATGATC
	<i>EcFL1</i> - F	GGAAAACTCTTTGAATACTCTACTGATTCCAGCA
	EcFL1- R-T7	CTTAATACGACTCACTATAGGGTCGCTGCTGCCTCGAACATGGTA
	<i>EcFL2-</i> F	GCTCTATGAATACTCCACTGATTCTGGTA
	<i>EcFL2</i> - R-T7	CTTAATACGACTCACTATAGGGTCCTTGCGCCTGATAACTTG
	EcAG F	GCAACCAAACTGCGTCAACAAATCG
	EcAG R T7	CTTAATACGACTCACTATAGGGTGTCTGCTCCTGGTGGGAGTAATG
Yeast 2 Hybrid	PapsFL1- NdeI	CATATGGGAAGAGGTAGGGTTCAGCTGAAG
	PapsFL1- EcoRI	GAATTCCTATTGTTTGAGACCAAGCATCCA
	PapsFL2- NdeI	CATATGGGAAGAGGTAGGGTTCAGCTGAA
	PapsFL2- EcoRI	GAATTCTTCATTAACATGGCGAAGCATCCA
VIGS	EcFL1- KpnI F	GGTACCGGAAAACTCTTTGAATACTCTACTGATTCCAGCA
Insert	EcFL1- SacI R	GAGCTCTCGCTGCCTCGAACATGGTAA
	EcFL2- KpnI F	GGTACCGCTCTATGAATACTCCACTGATTCTGGTA
	EcFL2- SacI R	GAGCTCCCTTGCGCCTGATAACTTGCACCAATG
	PapsFL1-EcoRI F	GAATTCTTGGAGCACCAACTTGATACTTCCT
	PapsFL1-XbaI R	TCTAGAAAGCACTGACCGTGTTCATG
	PapsFL2- F	AAGAGCTCCAAAATCTAGA
	PapsFL2-BamHI R	GGATCCGAATAGAGATACAACATTACATGCATG
Locus specific RT-	TRV2 - pYL156 F	GGTCAAGGTACGTAGTAGAG
PCR	TRV2 - pYL156R	CGAGAATGTCAATCTCGTAGG
	ACTIN F	GATGGATCCTCCAATCCAGACACTGTA
	ACTIN R	GTATTGTGTTGGACTCTGGTGATGGTGT
	PapsFL1 F	CAATAGAAAGATACTTACTTCCATGGT
	PapsFL1 R	AAGCACTGACCGTGTTCATG
	PapsFL2 F	GTAACCGAATAATCTCATATCTATCTC
	PapsFL2 R	GAATAGAGATACAACATTACATGCATG
	UBIQUITIN F	AACCCTTGAGGTTGAATCATCC
	UBIQUITIN R	GTCCTTCTTCTGGTAAACGT
	<i>EcFL1</i> - F	GGAAAACTCTTTGAATACTCTACTGATTCCAGCA
	<i>EcFL1</i> - R	TCGCTGCTGCCTCGAACATGGTAA
	<i>EcFL2</i> - F	GCTCTATGAATACTCCACTGATTCTGGTA
	EcFL2-R	TCCTTGCGCCTGATAACTTG
VIGS	PapsFL1 F	GATTTAGAATCCTTCAATGTGA
Down-regulation	PapsFL1 R	AAGCACTGACCGTGTTCATG
screen	PapsFL2 F	GACTTACAATCCATGAGTCTTAAA
	PapsFL2 R	GAATAGAGATACAACATTACATGCATG
	<i>EcFL1-</i> F	TCTCTGTTCTTTGTGATGCTGAAGT
	<i>EcFL1</i> - R	TTGATGGTTCTAGTCTGTGGTCGAA
	<i>EcFL2</i> - F	GAAGTTGCTTTAATTGTCTTCTCTA
	EcFL2-R	AGGCCTCGTCGTATGTGTTTGTGC
qRT-PCR	PapsFL1 F	TTATGCCACGGTGGATGCT
	PapsFL1 R	ACAGATCTATATGAAACATCCATCAACA
	PapsFL2 F	GAAGAAGGGAATCGAACTCAGACT
	PapsFL2 R	TGCGACGGATAGACACCCA
	<i>EcFL1</i> - F	ACAGCAGCAACCTCAGTGTGA
	<i>EcFL1</i> - R	TGCTGCCTCGAACATGGTAA
	EcFL2- F	ATAACCCAGCAGCAGCAGCAGCA
	EcFL2-R	GTATGTGTTTGTGCTCCATCTGTGTT
	GADPH-F	GCTTCCTTCAACATCATTCC
	GADPH-R	AGTTGCCTTCTTCTCAAGTC

Supplemental Table 2. Primers used for all the experiments