Codon 72 polymorphism of the TP53 gene

S.Ara, P.S.Y.Lee, M.F.Hansen¹ and H.Saya* Department of Neuro-Oncology and ¹Department of Molecular Genetics, The University of Texas M.D.Anderson Cancer Center, Houston, TX 77030, USA

Previous studies revealed that the human TP53 gene has a singlebase difference in amino acid residue 72 among several cDNA and genomic clones (1, 2). The single-base change causes alteration of amino acid residue 72 from arginine to proline. Here we report that the variation at position 72 is caused by a polymorphism and not by mutation, and this polymorphism can be easily analyzed using polymerase chain reaction (PCR).

PCR Primers:

Sense oligo: 5'-TTGCCGTCCCAAGCAATGGATGA-3' Antisense oligo: 5'-TCTGGGAAGGGACAGAAGATGAC-3'

*Polymorphism: Acc*II digest of the amplified fragment identifies two alleles: A1 = -199 bp and A2 = -113 bp + -86 bp.

Frequency: Estimated from 50 unrelated individuals. A1 = 0.36 A2 = 0.64

Chromosomal Localization: The polymorphic *AccII* site occurs in the 4th exon (amino acid residue 72) of the human TP53 gene, which is localized to the short arm of chromosome 17 (17p13).

Mendelian Inheritance: Co-dominant segregation of the AccII alleles observed in two families.

PCR Conditions: Target sequences are amplified in a 100- μ l reaction volume containing 500 ng of genomic DNA, 1.25 mM dNTPs, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂, 0.01% gelatin, 0.5 μ g of each primer and 2.5 units of recombinant *Taq* DNA polymerase (Perkin Elmer Cetus, Norwalk, CT). The amplification is performed for 35 cycles with an annealing temperature of 60°C. The PCR product is digested with *AccII* for 2 hr at 37°C. The DNA fragments are separated by electrophoresis on 4% NuSieve agarose gel.

References: 1) Harris, N., Brill, E., Shohat, O., Prokocimer, M., Wolf, D., Arai, N. and Rotter, V. (1986) *Mol. Cell. Biol.* 6, 4650–4656. 2) Matlashewski, G.J., Tuck, S., Pim, D., Lamb, P., Schneider, J. and Crawford, L.V. (1987) *Mol. Cell. Biol.* 7, 961–963.

* To whom correspondence should be addressed

Rsal polymorphism in von Willebrand factor (vWF) at codon 789

G.R.Kunkel, J.B.Graham, D.M.Fowlkes and S.T.Lord

Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA

Source/Description: The sequence of vWF (Mancuso *et al.*) showed a potential DNA dimorphism of the first base in codon 789 (Thr/Ala). An RsaI site is present (+) when the sequence is ACC and absent (-) when it is GCC.

Polymorphism: Using two 20 base primers starting 200 bp 5' and 122 bp 3' to the dimorphic site, genomic DNA was amplified 35 cycles as described in Graham *et al.* under these conditions: 30'' at 90°C, 2' at 60°C, 4 mM MgCl₂, electrophoresis in 4% agarose. RsaI (-/-) persons show one 322 bp band, (+/+) show two (200 and 122 bp), and (+/-) show three bands.

Primers:

Primer 1: TGG GCA ACT CTG AGT CTC TT Primer 2: AGA AAA CTG AAG GGC AGG CA

Chromosomal Location: 12pter-p12. Codon 789 of vWF gene.

Mendelian Inheritance: Autosomal co-dominant in one family.

Population Genetics: The (+:-) allele frequencies in 7 ethnic groups were: Anglo-Americans (100 chromosomes) .65: .35; Swedes (46) .56: .44; Basques (46) .56: .44; East Indians (46) .80: .20; Malays (42) .86: .14; Chinese (48) .94: .06; African-Americans: (74): .46: .54.

Heterozygosity: (expected/observed): Anglo-Americans .46/ .54; Swedes .49/.50: Basques .49/.43; East Indians .32/.39; Malays .23/.19; Chinese .11/.04; African-Americans: .50/.49.

References: 1) Mancuso, D.J. *et al.* (1989) *J. Biol. Chem.* **264**, 19514–19527. 2) Graham, J.B. *et al.* (1989) *Blood* **73**, 2104–2107.

