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ABSTRACT
A new method which predicts internal exon sequences
in human DNA has been developed. The method is
based on a splice site prediction algorithm that uses
the linear discriminant function to combine information
about significant triplet frequencies of various
functional parts of splice site regions and preferences
of oligonucleotides in protein coding and intron
regions. The accuracy of our splice site recognition
function is 97% for donor splice sites and 96% for
acceptor splice sites. For exon prediction, we combine
in a discriminant function the characteristics describing
the 5'-intron region, donor splice site, coding region,
acceptor splice site and 3'-intron region for each open
reading frame flanked by GT and AG base pairs. The
accuracy of precise internal exon recognition on a test
set of 451 exon and 246693 pseudoexon sequences is
77% with a specificity of 79%. The recognition quality
computed at the level of individual nucleotides is 89%
for exon sequences and 98% for intron sequences.
This corresponds to a correlation coefficient for exon
prediction of 0.87. The precision of this approach is
better than other methods and has been tested on a
larger data set. We have also developed a means for
predicting exon - exon junctions in cDNA sequences,
which can be useful for selecting optimal PCR primers.

INTRODUCTION
Prediction of coding and intron regions within large regions of
uncharacterized genomic DNA is one of the challenging problems
in analyzing newly sequenced DNA. Although the intermediates,
products and reaction mechanisms of splicing were characterized
some years ago, pre-mRNA structural features that are important
for this process are just now being investigated (1). This is one
of the principal motivations for using statistical methods for exon
recognition.
Many methods and algorithms have been suggested for

recognizing the components of gene structure. Currently there
are two general approaches used for finding protein coding
regions [see reviews by Stormo and Staden (1,2)]. The global

approach (gene search by content) uses one or more coding
measures, a function that calculates, for any window of sequence,
a number or vector that estimates the protein-coding potential
of these regions. The local approach (gene search by signal) is
the identification of promoters, splice sites, translation initiating
and terminating sites, poly(A)-signals, that surround coding
regions. A comprehensive assessment of various protein coding
measures was done by Fickett and Tung (3). They estimate the
quality of more than 20 measures and showed that the most
powerful-such as 'in-phase hexanucleotide composition', codon
and amino acids usage-can result in up to 81% accuracy as
coding region recognition functions on 54 base windows.
Combining 'fourier', 'run', 'ORF' and 'in-phase hexamer'
measures gave 82.4% accuracy on phase-coding human 54 base
windows and 87.8% on 108 base windows. Accurate recognizers
of coding gene regions based on neural network approaches have
also been demonstrated recently (4-5).
A typical way of finding a functional signal is to search for

similarity to a consensus sequence or by measuring the fit using
a weight or neural network matrix. Such matrices can present
the information about the sequences from both sides of the
conserved dinucleotide (AG for the acceptor sites and GT for
the donor sites) (6-8,20). Lapedes et al. (7) using the neural
network matrices achived accuracy of 94% and 91% for
predicting donor and acceptor splice sites, respectively. The most
accurate splice site prediction using a neural network approach
shows (8) that 95% of the true donor and acceptor sites can be
detected. It means that on average there are one and a half false
donor sites per true donor site and six false acceptor sites per
true acceptor site. The neural network method performed better
than the weight matrix method of Staden, and a network that
combined the detection of coding/noncoding regions and splice
junction detection significantly reduced the number of false
positive splice junction predictions (8).
During the last few years, several complex systems for

predicting gene structure have been developed (4,9- 13). These
systems combine information about functional signals and
regularities of coding or intron regions. On this basis, potential
first, internal and terminal exons can be predicted and the top
ranking combination of them will present a model of gene
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structure. The programs GRAIL (4) and SORFIND (11) show
only the positions of candidate exons and do not attempt to
produce assembled genes. SORFIND reaches 59% accuracy of
internal exons prediction (at both 5' and 3' splice junctions and
in the correct reading frame). To date, GeneModeler (9), GeneID
(10), GeneParser (12) and XGRAIL (13) are the often used
integrated packages that predict gene structure from genomic
DNA. The first two methods initially identify potential functional
motifs, including start and stop codons, splice sites and poly(A)
signals, then evaluate the assembled combination of the gene
components by sequential filtering. GeneID can predict the true
gene structure as a top ranking structure in only 14% of tested
vertebrate gene sequences, and in only 54% identify the correct
exons with correct splice boundaries (10). A dynamic
programming approach (alternative to the rule-based approach)
was suggested by Snyder and Stormo (12). It accomplishes an
exhaustive and mathematically rigorous search for the globally
optimal solution. A sequence is divided into exons and introns
by finding the best internally consistent set of high-scoring exon
and intron subsequences. Weights for the various classification
procedures are determined by training a feed-forward neural
nerwork to maximize the number of correct predictions.
GeneParser precisely identifies 74% of the internal exons (with
a specificity of 62%), but the structure of only 17% of the test
genes were exactly predicted. The prediction quality decreases
dramatically for terminal exons, which seems to require special
consideration (12). However, accurate prediction of internal
exons is very important, because a cloned genomic DNA
fragment rarely contains the entire sequence of a gene.
The goal of our work is to develop a simple computational

approach for revealing internal exon regions, based on an
improved splice site recognition method.

METHODS
The data
The data set was taken from GenBank (Release 72) (14). It
includes all DNA fragments of human genes that contain introns
and have unambiguous exon assignments in the feature table. This
set contains 692 sequences with 2037 donor splice sites and 2054
acceptor splice sites having the GT and AG conserved
dinucleotide in flanking intron positions. We use only GT- and
AG-containing splice sites because the occurrence of other
dinucleotides in conservative splice site positions is very rare (5
of 794) (15). Limiting our data set to these sites probably reduces
the influence of annotation error in our study. Analysis of 50
cases of 'GT-AG rule' exceptions shows that 21 of them to be
due to annotation error and in 17 other cases the intron-exon
assignment appeared to be essentially putative (15). Moreover,
the striking similarity among the rare splice junctions that do not
contain AG or GT indicates the existence of special mechanisms
to recognize them (16). Also, 89417 pseudodonor and 134150
pseudoacceptor sites that contain either a GT or AG base pair
(and are not annotated as splice sites) were extracted from these
sequences. The number of pseudosites is 44 and 65 times more
than the number of real donor and acceptor splice sites,
respectively. The characteristics of sequences around splice sites
and pseudosites were used for developing and testing human
splice site recognition functions. The data were divided into 2
parts, a training set including 2/3 of all sequences, and a test
set containing the remaining ones. The selected data is 5 times

larger than that used in the analysis of Brunak et al. (8). We
did not remove the homologous fragments that could increase
prediction values, but we also did not remove groups of genes
with alternative splicing sites [as in Brunak et al. (8)], that may
decrease values of predictive accuracy because only the major
way of splicing (and corresponding splice site positions) is usually
annotated for each sequence.
The data set for computing octanucleotide preferences in coding

and intron regions included all human gene sequences from
GenBank. From this data corpus, the regions of genes that are
in the test splice site data set were removed. The remaining data
set includes 4074593 bases of coding regions and 1797572 bases
of intron sequences.
The data set for distinguishing potential exon and pseudoexon

ORF sequences contains 952 exons and 528480 pseudoexons in
the training set and 451 exons and 246693 pseudoexons in the
test set.
The data set for distinguishing exon-exon junction positions

in cDNA includes 1123 exon-exon junctions and 262264 other
positions in the training set; and 517 exon-exon junctions and
137438 other positions in the test human mRNA sequences.

Discriminant analysis
Recognition of authentic splice sites (from the population of all
AG or GT base dinucleotides) or authentic exons (from all open
reading frames (ORF) beginning with AG and terminating by
GT dinucleotides) was performed by the technique of linear
discriminant analysis. Characteristics of different functional parts
of splice site and exon sequences may have different weights in
the recognition function reflecting their relative significance for
recognition. We have applied the technique of discriminant
analysis to relate a given sequence which has particular values
of the p measures (or 'characteristics') xl, ... xp to one of two
alternative classes: class 1 (sites or exons) or class 2 (pseudosites
or pseudoexons) (14). The term 'pseudo' is applied to all GT
and AG dinucleotides, which are not splice sites.Analogously,
all open reading frame fragments flanked by GT and AG
dinucleotides which are not real exons are refered to as
pseudoexons. The procedure of linear discriminant analysis is
to find a linear combination of the measures (called the linear
discriminant function or LDF), that provides maximum
discrimination between real and pseudosites (or pseudoexons).
The linear discriminant function:

(EQ 1)Z= iXA
i=l

classifies x(xl, ..., xp) into class 1 if z - c and x into class 2
if z < c. The vector of coefficients at (al,a2,....ap) and
threshold constant c are derived from the training set by
maximizing the ratio of between-class variation of z to within-
class variation and are equal to (17):

a=s-('-( 2)

and,
LI - )

2

(EQ 2)

(EQ 3)

where 141 and A2 are the sample mean vectors of characteristics
for class 1 and class 2, respectively:
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n, k=l
(EQ 4)

S[siyj is the pooled covariance matrix of characteristics:

S.. = 1 : (xk g)(xk -i) (EQ 5)tIj +n2-2 1=1 ik= i

(ij = 1,.. ,p); xlik is the value of characteristic i of k-th sequence
in class I and n1 is the sample size of class 1. Thus, based on
these equations we can calculate the coefficients of LDF
(a1,a2,....ap) and threshold constant c using the values of
characteristics of site and pseudosite sequences from the training
sets and then to test the accuracy of LDF on the test set
data.Significance of a given characteristic or set of characteristics
can be estimated by the generalized 'distance' between two classes
(called the Mahalonobis distance or D2) (17):

site (s) and pseudosite (p) sets of sequences in i-th position of
a (L,R) window, respectively. Then the preference of a given
triplet fkj in the i-th position of a splice site can be defined as:

F'
P(i) = s,k

s,k p,k
(EQ 7)

For splice site discrimination we use the mean preference index
obtained by averaging the preferences in the (L,R) window
around any GT (for donor) or AG (for acceptor) dinucleotide
of a sequence under analysis (eqn. 8), where j is the potential
splice site position, corresponding to the G base of the GT or
AG dinucleotide; m is the total number triplets and i is the position
of a triplet within the (L,R) window:

( R

sp (j) = XP(i)
m _i=L

(EQ 8)

D = ( 9 - 9 )s ( - 2 ), (EQ 6)

which is computed based on values of the characteristics in the
training sequences of class 1 and 2.

Splice site recognition
The triplet composition of sequences adjacent to splice site
positions is a good discriminant of splice sites (18-19). We can
use it as a characteristic of the particular regions that define a
splice signal.
The integral view on the difference of triplet composition in

splice and pseudosplice sequences is shown with the
3-dimensional histograms in Figure 1. This illustration allows
the visualization of the occurence of significant triplets in the
flanking regions of the major splice consensus sequences.
We calculate the number of triplets in the (L,R) window around

a conserved AG or GT dinucleotides, where L is the number
position to the 5'-side, and R is the number position to the 3'-side
of dinucleotides (L = 30, R = 50 bp for donor sites and
pseudosites; and L = 80, R = 30 for acceptor sites and
pseudosites). Each column in the figure presents the difference
in the frequency for a specific triplet between authentic splice
sites and pseudosites in a specific position relative to the conserved
dinucleotide. We see that only short regions around splice
junctions have a big difference in triplet composition between
sites and pseudosites. However, dissimilarity in many other
regions can also be seen: for donor sites, the coding region and
G-rich intron region may be distinguished; for acceptor sites,
the intron G-rich region, branch point region, poly(T/C)-tract,
and coding region show significant difference between splice site
and pseudosplice regions. We have applied some sequence
characteristics of these regions for splice site recognition (21,22).
We tabulate the frequency of triplets, in the (L,R) window

around a splice site, where L is the number position to the 5'-side,
and R is the number position to the 3'-side of the exon-intron
(or intron-exon) boundary. The triplet frequencies are stored
in a matrix (L+Rx64) in size. This matrix is computed for 1375
donor splice sites and for 60532 GT-containing pseudosites from
the training set. The same is done for 1386 acceptor splice sites
and 89791 AG-containing pseudosites from the training set.

Let Fis,k, Fip,k be the frequencies of a specific triplet (the
triplet type marked by k, where k = 1,2,...,64) in the learning

Only a subset of all possible triplets is useful for splice site
prediction. Therefore, the discrimination function is modified to
take into account only those triplets which have a significant
difference in the occurrence between splice sites and pseudosplice
sites. If triplets are equally present in both types of regions, P(i)
will be equal 0.5. For computing significant triplets, the
summation in eq.8 is made if (P(i)-0.5) > oa, where ai is a
threshold value for significance, and m is the number of the
significant triplets.

Pseudosites may be localized in intron as well as in exon
regions. The significant difference of triplet composition between
intron and coding regions is clear, therefore the recognition
function will be more sensitive if the triplet composition of both
cases is not represented in a single table. Two separate tables
of triplet frequencies around pseudosplice junctions localized in
either intron Fpi,k or in coding Fp,k regions were calculated. For
discrimination, the average value of eqn. 8 computed with each
of these tables is used.
For the characteristics of intron and coding regions adjacent

to splice sites, we use octanucleotide composition statistics (19).
If the sequence S is defined as:

S = nln2n3...nN; fniA, C, G, T; i = 1 ......NJ
then
s = n1n2n3.....nLN;ni A, C, G, T; i = I. L <

describes an oligonucleotide of length L.
For discriminating coding and noncoding regions, we can use

the probability that oligonucleotide Sk is coding as estimated by
the Bayesian method:

P(CISk) =
P(Sk +C)P(C)

P(Sk IC)P(C) + P(Sk IN)P(N)

(EQ 9)
F

c (Sk )

F
c (Sk ) +F. (Sk )
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where P(Skl C), P(skIN) are the a posteriori probabilities for Sk
to occur in coding and noncoding regions; and P(C), P(N) are
the a priori probabilities of a coding or noncoding region. We
assume that P(C) = P(N) and F,(sk), F5(sk) are the frequencies
of Sk in coding and noncoding sets, respectively.
We can consider oligonucleotides only in phase with coding

regions (during learning on coding sequences), i.e. consider the
oligonucleotides beginning with the first position of codons. A
discriminant function analogous to Eq. 9 based on such in-phase
oligonucleotides is:

P (Clsk)= (SkIC)
F (sk)+F(sk IN)

(EQ 10)

The simplest discriminant index for predicting a coding region
is the average of Eq. 9 or Eq. 10 along a sequence window W:

P )
m i=l

(EQ 11)

where P(i) is P(Clsk) or P'(Clsk) and s = 1 or s = 3; Sk is the
oligonucleotide starting in the i-th position of the sequence, and
m is the number of summed oligonucleotides.

Discriminant function for splice site recognition
We combine the characteristics of various parts of splice site
regions (Figure 1) in a linear discriminant function. The

a GGTJ
b
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characteristics used for classifying donor sites are: (1) the average
triplet preferences (eqn. 8) in the potential coding region (-30
to -5), (2) conserved consensus region (-4 to +6), and (3)
G-rich region (+7 to +50); (4) the number of significant triplets
in the conserved consensus region (a = 0.15 in the eqn. 8); (5)
the octanucleotide preferences (eqn. 10) for being coding in the
(-60 to -1) region and (6) being intron in the (+1 to +54)
region; and (7) the number of G-bases, GG-doublets and GGG-
triplets in +6 to +50 region.
The characteristics used for classifying acceptor splice sites

are: (1) the average triplet preferences (eqn. 8) in the branch
point region (-48 to -34), (2) poly(T/C)-tract region (-33 to
-7), (3) conserved consensus region (-6 to +5), and (4) coding
region (+6 to + 30); (5) the octanucleotide preferences (eqn.
6) of being coding in the (+1 to +54) region and (6) in the (-1
to -54) region; and (7) the number of T and C in poly(T/C)-
tract region. The values of these characteristics were calculated
for the training set and the parameters ck of the discriminant
function were computed based on them. Then the accuracy of
the discriminant function was estimated on the test data set. The
search for splice site positions starts from finding GT or AG
dinucleotides and the discriminant functions estimate assigning
them to donor or acceptor splice sites, respectively.

Discriinant function for internal exons recognition
We consider all open reading frames in a given sequence that
are flanked by AG (on the left) and GT (on the right) dinucleotides
as potential internal exons. The structure of such exons is
presented in Figure 2. As components of the internal exon
discriminant function we take the octanucleotide composition
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Figure 1. Difference of the triplet composition around donor and GT-containing pseudodonor sites (left); around acceptor and AG-containing pseudoacceptor sites
(right) in 692 sequences of human genes. Each column presents the difference of specific triplet fiequences between authentic sities and pseudosites in a specific position.
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preferences for the intron 70 bp to the left of the potential acceptor
site, the value of the acceptor splice site recognition function,
the octanucleotide composition preferences for coding of the
ORF, the value of the donor splice site recognition function, and
the octanucleotide composition preferences for intron 70 bp to
the right of the potential donor site.
The values of these characteristics were calculated for the

training set and the parameters &of the discriminant function were
computed based on them. Then the accuracy of the discriminant
function was estimated on the test data set.

Discriminant function for exon-exon junction recognition in
cDNA
Recognition ofexon-exon junctions in cDNA may be very useful
for gene sequencing when starting with a sequence of cDNA
clone. The essence of the mapping strategy is as follows. In a
given cDNA sequence one selects sites for PCR primers that
(hopefully) lie in adjacent exons. Then PCR used to amplify the
intron that lies between the sites. The amplified DNA is
sequenced (i) to confirm that we have, in fact, amplified the
expected product, and (ii) to allow selection of a second primer
set. Accurate prediction of exon-exon junctions in cDNA
improves primer selection in internal exon sequence.
An approach for identifying exon-exon junctions is to look

for the remnants of donor (MAG/GURAGU) and acceptor
(YAG/G) consensus sequences that remain in the mRNA (16,23);
i.e. MAG/G sequence. This consensus is only found in 25% of
authentic exon -exon junctions, and at the same time per each
consensus belonging to an authentic junction, we will predict
about 15 false ones. We use the information about adjacent to
consensus sequences to reduce these false predictions.
A discriminant recognition function that takes into account two

components: triplet preferences within the consensus region (-4

N

a)

0.0

N

acceptor

b)

96%

1.0 0.0

udo cceptor

1.0

Fgure 2. Various functional regions of internal exon corresponding to components
of the recognition function.

to +3), and triplet preferences adjacent to the splice site
consensus (-20 to -5 and +4 to +20 bp) was developed.
Another variant of the recognition function uses the same

components of triplet preferences, but they are computed based
on three matrices of triplet composition depending on occurrences

of junction conserved triplets. AG/G (that found in 28% of
exon-exon junctions), AG/G with 1 mismatch (70.41 %) and
AG/G with 2 mismatch (95%) were considered. Triplet
preferences (eqn. 7) were computed using triplet frequencies of
mRNA regions around authentic junction positions and non-

junction positions of mRNA that contain the triplet variants
describing above.
The search for exon-exon junctions begins with finding a

junction triplet variant in a given mRNA sequence, and then
estimating the exon-exon junction triplet preferences.
The values of these characteristics were calculated for the

training set and the parameters a of the discriminant function
were computed based on them. Then the accuracy of the
discriminant function was estimated on the test data set.

RESULTS AND DISCUSSION
Splice site prediction
We applied linear discriminant analysis to the development of
a splice site recognition function. The values of 6 characteristics
of donor site were calculated for 1375 authentic donor sites and
60532 pseudosite sequences from the learning set. The
Mahalonobis distances showing the significance of each
characteristic are given in Table la. The most significant
characteristic, as measured by the value of D2, is combined
separately with each of the remaining characteristics to yield a
new combined D2. The additional characteristics giving the
largest D2 are then included in the selected set. The cycle is
repeated with the remaining characteristics. Following this
procedure, characteristics were included in the discriminant
function in the order presented in Table lb, which also shows
the increase of the combined D2 with subsequent addition of
each characteristic. The strongest characteristic for donor sites
is triplet composition in the consensus region (D2 = 9.3)
following by the adjacent intron region (D2 = 2.6) and coding
region (D2 = 2.5). Other significant characteristics are: the
number of significant triplets in conserved consensus region; the
number of G-bases, GG-doublets and GGG-triplets in intron G-
rich region; the quality of the coding and intron regions. Each

D of the last four characteristics increases the total D2 of
discrimination between sites and pseudosites by about 0.5.
The accuracy of the discriminant function based on these

characteristics was tested on the recognition of 662 donor sites
and 28855 pseudosite sequences not included in the training set.

Table 1. Significance of various characteristics of donor sites

Characteristicsa 1 2 3 4 5 6 7

(a) Individual D2 9.25 2.64 2.47 0.01 1.53 0.01 0.41
(b) Combined D2 9.25 11.79 13.55 14.92 15.49 16.56 16.78

al, 2, 3 are the triplet preferences of consensus, intron G-rich and coding regions, respectively; 4 is the
number of significant triplets in the consensus region, 5 and 6 are the octanucleotide preferences for being
coding 54 bp region on the left and for being intron 54bp region on the right of donor splice site junction;
7 is the number ofG bases, GG-doublets and GGG-triplets in intron G-rich region (see more detail description
of the characteristics in Methods).

NJ
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Table 2. Significance of various characteristics of acceptor sites

Characteristicsa 1 2 3 4 5 6 7

(a) Individual D2 5.14 2.63 2.71 2.34 0.01 1.05 2.41
(b) Combined D2 5.14 8.08 9.98 11.33 12.50 12.82 13.64

al, 3, 4, 6 are the triplet preferences of poly(T/C)-tract, consensus, coding and branch point regions,
respectively; 7 is the number of T and C in intron poly(T/C)-tract region, 2 and 5 are the octanucleotide
preferences for being coding 54 bp region on the left and for being intron 54bp region on the right of donor
splice site junction; (see more detail description of the characteristics in Methods).

The histograms of the LDF function value distribution are shown
in figure 3a. The general accuracy of donor site prediction is
97% (C = 0.63). The neural network-based method has C =

0.61 at 95% accuracy (8). C is an important accuracy criterion
(correlation coefficient) that takes into account the relation
between true positives and negatives as well as false positives
and negatives predictions (24):

(PN -P f )C(X)=x .r x

I(NX+ Nf )(P + Pf )(N + Pf )(N + N)

(EQ 12)

Here Px and Nx are the correctly predicted positives and
negatives, and Pfx and Afx are similarly the incorrectly predicted
positives and negatives.
The values of 7 acceptor site characteristics of were calculated

for 1386 authentic acceptor site and 89791 pseudosite sequences

from the learning set. The D2 showing the individual
significance for each characteristic are given in Table 2a.
Table 2b shows the increase of the combined D2 with the
subsequent addition of each characteristic. We can see that
strongest characteristics for acceptor sites are: the triplet
composition in poly(T/C)-tract region (D2 = 5.1); consensus

region (D2 = 2.7); adjacent coding region (D2 = 2.3); and
branch point region (D2 = 1.0). Some significance is found for
the number of T and C in the adjacent intron region (1)2 = 2.4);
and the quality of the coding region (D2 = 2.6). The triplet
composition of the G-rich region before the branch point position
did not significantly increase the quality of acceptor sites
recognition, and we did not include it in discriminant function.
The accuracy of the discriminant function based on these
significant characteristics was tested on the recognition of 666
acceptor sites and 43726 pseudosite sequences not included in
the training set. The histograms of the LDF function value
distribution are shown in Figure 2b. The general accuracy of
acceptor site prediction is 96% (C = 0.47). This accuracy is
better than in the neural network-based method, which has C
< 0.40 at this level of acceptor site recognition (8).
We have demonstrated improved accuracy of splice site

recognition by using a combined classification scheme that
considers both characteristics of various regions of authentic
splice site sequences as well as adjacent protein coding and intron
sequences. Using discriminant analysis we have shown the
relative significance of these regions for recognition and applied
it to exon recognition.

intron coding region

Acceptor
splice site

ORF

intron

Donor
splice site

Figure 3. The histograms of combined discriminant fuction values distribution
for 662 donor sites and 28885 pseudosites (a) and for 668 acceptor sites and 44359
pseudosites from sequences. (b). The vertical axis is the number of sequences
with a specific weight, the horizontal axis is the weight values.

Table 3. Significance of various characteristics of internal exon regions

Characteristicsa 1 2 3 4 5

(a) Individual D2 15.04 12.06 0.41 0.18 1.47
(b) Combined D2 15.04 25.32 25.77 25.82 25.89

al and 2 are the values of donor and acceptor site recognition functions; 3 and
4 are the octanucleotide preferences for being intron 70bp region on the left and
70bp region on the right of potential exon region; 5 is the the octanucleotide
preferences for being coding of potential exon region (see more detail description
of the characteristics in Methods).

Internal exon prediction
We have applied linear discriminant analysis to the development
of an internal exon recognition function. The values of 5 exon
characteristics were calculated for 952 authentic exon and 528480
pseudoexon sequences from the learning set. The D2 showing
the significance of each characteristic are given in Table 3a. Table
3b shows the increase in the combined Mahalanobis distance by
subsequently adding each characteristic. The strongest
characteristics for exons are the values of recognition functions
of flanking donor and acceptor splice sites (D2 = 15.04 and D2
= 12.06, respectively). The preference of ORF being a coding
region has D2 = 1.47 and adjacent left intron region has D2 =
0.41 and right intron region has D2 = 0.18. The last three
characteristics do not significantly increase recognition suggesting
that splice site sequences play the main role in exon
recognition.The accuracy of the discriminant function based on
these characteristics was calculated from recognition of 451 exon
and 246693 pseudoexon sequences from the test set. The general
accuracy of exact internal exon prediction is 77% with specificity
79%. If results are analyzed at individual nucleotides level, the
accuracy of exon prediction is 89% with specificity 89%; intron
position prediction is 98% with specificity 98 %. The combined
dynamic programming and neural network-based method (12)
described earlier have 75% accuracy of the exact internal exons
prediction with specificity 67%. Our method has 17% less false
exon assignments with the better level of true exon prediction.

A GT
:. .: 2&&S&um
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Table 4. Accuracy of internal exon prediction for some genes of the test set

GenBank name Number of Number of Number of
of gene annotated correctly partially

exons predicted exons predicted exons

HUMA1ADG 9 5 3
HUMALDC 6 6 0
HUMALPI 9 7 0
HUMCAD 10 7 1
HUMCIIAlP 5 5 0
HUMCOL2A1G 12 11 1
HUMCP210H 8 8 0
HUMCYP2DG 7 6 1
HUMCYPIIE 7 5 0
HUMEFIA 5 4 1

Table 5. Prediction of splice site position in cDNA

Consensus LDFa 1 LDF 2
Sn (%) Number of false positive predictions per one correct prediction

MAGG 25 14 5 0.7
AGG 29 19 8 0.9
MAGG* 59 50 28 15
AGG*b 70 68 42 27

aLDF-linear discriminant function
b*_means that the consensus can have 1 mismatch;
Sn-percent of true prediction (sensitivity).

Another method specially designed for internal exon prediction
(11) shows 59% accuracy of exact exon prediction with specificity
of 34.5%. This result was obtained on a test set of 80 internal
exons. We have observed an accuracy (77%/79%) analysing 451
test exon sequences. The prediction of internal exons for a sample
set of genes using our recognition functions are shown in Table 4.

Exon-exon junction prediction in cDNA
The values of 2 characteristics were calculated for 1123
exon-exon junctions and 262264 other positions in cDNA of
human gene sequences from the training set. The D2 of the first
characteristic (triplet preferences in consensus region) is 3.5 and
of the second characteristic (triplet preferences in the right and
left adjacent to consensus regions) is 3.2. The combined D2 of
the both characteristics is 6.1. This result shows that some
information about exon- exon junctions remains in the mRNA
sequence and may be used for predicting their positions. However
the information content of mRNA is much less than observed
for pre-mRNA, where the Mahalonobis distance of splice site
discrimination is about 16. Therefore, many false splice site
position predictions can be expected in cDNA analysis. We
compared the quality of our discriminant function with prediction
of exon-exon junctions using some consensus sequences: MA-
GG, AGG, MAGG with 1 mismatch, and AGG with 1 mismatch
(Table 5). For the discriminant functions 1 and 2, the level of
false prediction was calculated with the level of true prediction
the same as for a given consensus sequence. For a particular level
of true prediction (that corresponds to sensitivity of a consensus
sequence), the first discriminant function has 2-3 times and the
second discriminant function has 2.5 -20 times less the number
of false predictions as compared with the consensus sequences.
On the basis of the values of our discriminant functions, it is
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Figure 4. Profile of the probability belong to a exon-exon junction for the cDNA
of ribosomal protein gene HSRP7. The vertical axis is the value of probability
of a particular position belong to a exon-exon junction; the horizontal axis is
the position in the analysed sequence. The positions of true exon-exon junction
are marked by arrows.

possible to create a profile of probability (25) of being an
exon-exon junction for any position in a given cDNA sequence.
Primer subsequences can be selected in the regions with minimal
values of these probabilities. An example of such a profile for
the cDNA of ribosomal protein gene (GenBank entry HSRPS7)
is shown in Figure 4. We can see that the primer sequences can
be selected within the regions with the probability about zero
and such primers will not overlap an adjacent exons pair.

SUMMARY
We have demonstrated improved accuracy of splice site and
internal exon recognition by using a combined classification
scheme that considers both characteristics of various regions of
authentic splice site sequences as well as adjacent protein coding
and intron sequences. Using discrminant analysis we have shown
the relative significance of these regions for recognition. One
of the advantages of our approach is that we can recalculate the
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tables of triplets to obtain increasingly reliable statistics as the
size of the sequence data base increases. Also, the triplet tables
may be calculated for each class of organisms and will be used
for splice site selection of their genes.
The approach described in this article has also been applied

to developing 5'- and 3'-exon discriminant functions (22).
Some of the predicted pseudoexon ORFs can be further

removed in a gene structure predictive system because only a
subset of them will have an uninterrupted open reading frame
through the entire gene. The first version of such a system has
been developed (26). This system takes into account the
oligonucleotide composition of all key gene components
(5'-region, exons, introns, 3'-region and noncoding regions) and
the recognition of these components based on the functions similar
to eqns 9 and 11. Dynamic programming is applied to search
for a combination of splice sites with the maximal weight for
the tested gene components. Testing the system on 212 complete
human gene sequences shows that it can predict 80% of all exons
with 70% specificity and that 96% of the exons are predicted
partially. The detailed description of this method will be published
elsewhere. A test of the performance of the latest versions of
the most successful gene prediction programs, GeneModeler,
GeneId, Grail and GeneParser, shows that they have an accuracy
of correct exon prediction of 0.02, 0.33 -0.42, 0.31-0.52 and
0.47, respectively (27). This shows that the gene prediction
problem requires further investigation.
The algorithm for prediction of exon-exonjunctions in cDNA

may increase the effectiveness of primer selection for gene
mapping by PCR reaction.

Analysis of uncharacterized human sequences based on our
methods for splice site (HSPL), internal exons (HEXON), all tpe
of exons (FEXH) and gene structure (FGENEH) prediction is
available using a network server by sending the file containing
a sequence (the sequence name in the first string) to
service@..bchs. uh. edu with the subject line hspl, hexon, fexh or
fgeneh.
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