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1 Materials and methods

1.1 Data collection

We retrieved functional data on synaptic transmission from cultured autaptic neu-
rons. This preparation allows versatile assessment of synaptic variables from a large,
well-defined population of synapses and is also an ideal and widely applied prepara-
tion to analyze genetic perturbations using neurons from mutant mice or by applying
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viral constructs. A perturbation was defined as a pharmacological or genetic manip-
ulation, and included gene knock-out (KO), knock-in (KI), gene knock down (KD), and
overexpression of a wild-type (WT) or mutant variant on a WT or KO background (OE).

In this study the following variables were included:

A Amplitude of the evoked excitatory post synaptic current (EPSC), as a measure of
evoked synaptic release (Figure 1C1)

RRP Readily releasable pool defined by the integral of the postsynaptic current re-
sponse to a 500 mOsmol hypertonic sucrose application, reporting vesicle prim-
ing at steady state (Figure 1C2)

Pv Vesicular release probability, reflecting the effectiveness of vesicle fusing during
action potential stimulation. Pv is a composite variable, obtained from the linear
relation in the release model (eq. 1) between release (R) and the product of RRP
and Pv by dividing the total EPSC charge, obtained by integration of the EPSC, by
the total charge of the RRP.

F Frequency of spontaneous release events (miniature EPSC’s or mEPSC’s) (Figure
1C3).

All variables are expressed as mean and standard error of the mean (SEM) and
stored in an Excel database (Microsoft, Redmond, USA) after being text mined from
literature or in some cases reconstructed from graphs using in-house written software
in Matlab (The Mathworks, Natick, USA). The data sources are indicated in column 1
of table S1. In a few cases, when SEMs were not reported, the SEM for perturbation j,
functional variable m was conservatively estimated as:

sjm � 2xjm

P
j0�j sj0mP
j0�j xj0m

Thus, missing SEMs are imputed from twice the average weighted SEM of the other per-
turbations. Some variables were reported as normalized to the control group. Since
our normalization algorithm in the preprocessing step (see below) normalizes by di-
viding through the variable value in the control group we imputed value 1 for the
corresponding variables in the control group.

1.2 Clustering

1.2.1 Model constraints

We designed the data analysis model with the following aims: (1) as the amplitude of
the genetic perturbation is difficult to control, the results should not depend on the
size of the perturbation (2) the model should take into account the variability of the
data (standard errors as reported in the studies where the data were taken from) and
(3) the model should be able to deal with missing data (as most studies only report
a subset of observables). A mixture of probabilistic principal component analyzers
(MPPCA) fulfills these constraints as detailed below. Effectively, the algorithm clusters
the orientations of the functional data, weighted by their standard errors and with
missing data receiving a weight of zero.

Note that we do not exclude perturbations from the clustering algorithm based on
statistical significance. Thus, some of the perturbations in the database are not signifi-
cantly different from the control condition (see Table S4 for an analysis of significance
of selected perturbations based on the t-test). These individually non-significant per-
turbations will still contribute to the overall clustering. This is a general property of
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statistical models in that they integrate weak data to support an overall stronger con-
clusion. Also note that the majority of small perturbations are assigned with roughly
equal probability to each of the clusters, see Figure S4.

Our MPPCA differs from an earlier approach by Tipping and Bishop [6], as they
do not deal with input with specified standard errors nor with missing data. Also,
Tipping and Bishop estimate multiple principal components whereas we only employ
the first one. As we only use the first principal component our algorithm could also
be termed a “mixture of weighted orthogonal least squares regressors” but we prefer
the MPPCA moniker.

1.2.2 Analysis of toy data to gain intuition in model

To obtain intuition about the model we analyze a toy data set by hand (in section 1.2.6
we give the mathematical details of the full model). For simplicity, we take the toy
data (1) to obey the release model perfectly, (2) to come from two clusters, one where
amplitude A is proportional to RRP and one where A is proportional to Pv and (3)
one positive and one negative perturbation relative to control for a total of four per-
turbations. Writing the four perturbations as row vectors with the elements in the
row vector in the order A-RRP-Pv , we have as toy data: x1 � �2;2;0�, x2 � �2;0;2�,
x3 � ��2;�2;0� and x4 � ��2;0;�2�. By design, perturbations 1 and 3 belong to clus-
ter 2 (see Figure 4 for definition of clusters) and perturbations 2 and 4 to cluster 1.
From the MPPCA model we get the following output: first the cluster assignment prob-
abilities q are given by q1 � q3 � �0;1� and q2 � q4 � �1;0� with the first element of
each qj denoting the probability of belonging to cluster 1 and the second element the
probability of belonging to cluster 2. As the toy data was designed to fit perfectly in a
cluster, the probabilities are 1 (for the right cluster) or 0 (for the wrong cluster). From
the cluster assignment probabilities we get the co-occurence matrix as (see eq. 11):

C �

0BBB@
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

1CCCA :
The co-occurence matrix C shows that perturbations 1-3 and 2-4 always cooccur hence
are in the same cluster. By reordering the rows and columns as in Figure 2 we get:

Creordered �

0BBB@
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

1CCCA
Second, the unit vectors are given by e�1� � �1=

p
2;0;1=

p
2� and e�2� � �1=

p
2;1=

p
2;0�.

Third, the model perturbation amplitudes are given by a1 � �0;2
p

2�, a2 � �2
p

2;0�,
a3 � �0;�2

p
2� and a4 � ��2

p
2;0� with the first element of each vector the model

perturbation amplitude in cluster 1 and the second element in cluster 2. The model
perturbation amplitudes are a nuisance parameters as it is not yet possible to control
the phenotypic effect of a genetic perturbation and hence we do not report them in
this study.

1.2.3 Preprocessing

In a minority of the studies all four variables A, RRP, Pv and F were reported, but in
most cases one or more variables were missing. Since A is related to RRP times Pv ,
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a minimum of two out of these three variables is sufficient to infer the effect of a
perturbation on vesicle priming and fusion. All perturbations that met this criterion
were included in the database, resulting in 121 perturbations from genetic manipula-
tions of 29 single genes and 4 gene pairs, and pharmacological manipulations with 2
biochemical agents. For most genes only one or two perturbations were reported in
the literature except for Cplx1 (43), Unc13a (12), Snap25 (6), Snapin (5), and Syt1 (12).

Before the clustering algorithm we normalized and log-transformed the raw per-
turbation values, both means and SEMs. In detail we took each perturbation with
non-zero value for column “normalized to n rows above” from table S1 and normal-
ized that value to the relevant control condition as indicated by this column. Denoting
with zjm the j-th perturbation of the m-th functional variable (with m 2 �1;2;3;4�)
and with zj0 the relevant control condition, each perturbation mean xjm was calcu-
lated as:

xjm � log2 zjm � log2 zj0

We calculated the normalized and log transformed perturbation variances vjm from
the raw perturbation standard errors of the mean sjm as listed in table S1 by propa-
gation of errors as follows:

vjm �
0@ sjm
zjm

!2

�
 
sj0
zj0

!2
1A =�log 2�2

1.2.4 From release model to principal component analysis

The release model of presynaptic vesicle release relates the amplitude of evoked re-
lease (A) to the size of the readily releasable pool (RRP ) and the probability of evoked
release (Pv ):

A � � RRP Pv (1)

with � a constant of proportionality. Extending the notation to include multiple per-
turbations, indexed with subscript j , we rewrite this model as:

Aj � � Rj pj

with index j 2 �0; : : : ; J� with J the number of perturbations and j � 0 the control
condition (wild type). We changed the symbols for the readily releasable pool and the
release probability such that each variable is represented by a single symbol (we need
to add subscripts later on). In the next step, we normalize all variables relative to wild
type and take logarithms, leading to:

Aj � Rj � pj (2)

where – with slight abuse of notation – each variable Z is calculated from Zj � log2 Zj�
log2 Z0 with j 2 �1; : : : ; J�. In order to get a homogeneous notation for the variables
and to be able to extend the set of variables in the future, we relabel the set of variables
�Aj; Rj; pj� as xjm with m indexing the variable, m 2 �1;2;3�. With this change, we
now have a single data matrix X of dimensions J by 3. The release model can be
rewritten in terms of the xjm as:

xj1 � xj2 � xj3 (3)

and can be viewed as a linear dependency among the columns of data matrix X. Put
another way, a singular value decomposition (SVD) of X has one singular value equal
to zero. However, the case where one of the singular values is equal to zero presents
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a minimum as a perturbation might not affect all of xj1, xj2 and xj3 but might affect
only a subset of these three. For example if the probability of evoked release is not
affected by perturbation j we also have the constraint xj3 � 0. Hence we can have a
“mix and match” of constraints depending on the effect of each perturbation on the
observed variables. Since we want to capture all these constraints in a simple model,
we propose a principal component analysis (PCA) model as follows:

xjm � aj em ; (4)

with aj the perturbation specific part and em the variable specific part. Since multiply-
ing each aj with a factor c and dividing em with the same factor c leads to the same
xjm, we normalize e to unit length to resolve the non-identifyability of the model. Sub-
stitution of eq. 4 in eq. 3 shows that the release model leads to a linear dependence
among the em:

e1 � e2 � e3

However, as stated above, there could be more constraints depending on the effect of
the perturbation. Thus, the PCA model of eq. 4 can be viewed as an encompassing
model assumption that incorporates all possible linear constraints among the compo-
nents of vector e. Perturbations obeying different constraints should be classified in
different clusters. In order to fit e from the data we first design a probabilistic version
of PCA and subsequently introduce a mixture of these PPCA’s to cluster similar e’s.

1.2.5 Probabilistic principal component analysis

The functional data have two characteristics that necessitate a generalization of model
assumption eq. 4: variables are reported with variability estimates (calculated from
repeated measurements over cells) and there are missing data (as authors did not
report all variables). Let us consider all perturbation experiments and corresponding
observations xjm and variance estimates vjm. Our modeling assumption is

xjm � ajem � � ; (5)

where � is normally distributed noise with precision wjm, i.e., standard deviation
w�1=2
jm obtained from the reported error estimates. When parameter m is missing

in perturbation experiment j, we simply set wjm � 0 (and can set xjm to any value
we like: it will not affect any of the equations). We assume that the noises for differ-
ent perturbations are independent which seems reasonable as these are measured in
different experiments with different samples.

Thus, we assume that the change induced by a particular perturbation factorizes
into a perturbation specific part aj (e.g., over-expression, knock-out) and a variable
specific part em. This is very similar to a (weighted) singular value decomposition,
in which we are only interested in the largest singular value. Standard singular value
decomposition, however, does not apply when we have different precisions wjm. The
model (5) is sometimes also referred to as a separable model. We can fit the parame-
ters a and e of this model by maximizing the log likelihood of the data X given these
model parameters:

L�X;W je;a� � �1
2

X
j;m

�
wjm�xjm � ajem�2 � log

�wjm
2�

��
; (6)

where X andW refer to the mean and variance data respectively. Setting the derivative
w.r.t. a to zero and solving for a gives

aj �
P
mwjmxjmemP
mwjme2

m
; (7)
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and doing the same for e gives

em �
P
j ajwjmxjmP
j a2

jwjm
: (8)

Iterating these two equations corresponds to coordinate-wise ascent: with each step
the log likelihood increases until a (local) maximum has been found. The model is
invariant under multiplication of a by c and division of e by c. For easier interpreta-
tion, we normalize e to a unit vector after each update. When all precisions are equal,
the log likelihood has a single global maximum (ignoring invariances as the ones just
explained) which corresponds to the truncated singular value decomposition of the
data matrix X and thus relates to the principal component of its covariance matrix.

1.2.6 A mixture of probabilistic PCA for clustering perturbations

We expand the above by introducing clusters of perturbations. We assume that per-
turbations belonging to the same cluster share the parameter-dependent part e in
model (5). We write e�k� for the unit vector corresponding to cluster k, with k � 1 : : : K,
pk for the prior probability that any perturbation belongs to cluster k, and a�k� for the
perturbation-dependent term in model (5) when corresponding to cluster k. Our goal
will be to fit these unit vectors, perturbation-dependent terms, and prior probabilities
to the data. The log likelihood of the data given all model parameters reads:

L�X;W je;a;p� � log
X
k
pk exp

h
L�X;W je�k�;a�k��

i

with L�X;W je�k�;a�k�� from (6).
It is relatively straightforward to derive an expectation-maximization algorithm

for the maximization of this log likelihood. We introduce an auxiliary matrix Q with
cluster assignment probabilities qkj and write

L�X;W je;a;p� �max
Q
F�e;a;p;QjX;W� ;

with

F�e;a;p;QjX;W� �
X
k;j
qkjL�Xj:;Wj:je�k�; a�k�j ��

X
k;j
qkj log

"
qkj
pk

#
;

and where the maximum is taken under the constraint
P
k qkj � 1 8j . The EM-

algorithm performs coordinate-wise ascent on the function F . Hence the mixture
of probabilistic principal component analyzers (MPPCA) algorithm consists of the fol-
lowing iterations:

E-step: Fix e and p and maximize w.r.t. a and then Q, yielding the updates:

a�k�j �
P
mwjmxjme

�k�
mP

mwjm�e
�k�
m �2

qkj / pk exp

"
�1

2

X
m
wjm

�
xjm � a�k�j e�k�m

�2
#
; (9)

where the q’s have to be normalized such that
P
k qkj � 1 8j .

6



M-step: Fix a and Q and maximize w.r.t. e and p, yielding the updates

e�k�m �
P
j qkja

�k�
j wjmxjmP

j qkj�a
�k�
j �2wjm

pk /
X
j
qkj ; (10)

where p has to be normalized such that
P
kpk � 1 and each e�k� is normalized to

je�k�j � 1.

To summarize the algorithm, inputs are the J by M dimensional data matrices X and
W and the number of clusters K. Output consists of (1) a K by J dimensional cluster
assignment matrix Q, (2) K by M dimensional unit vectors e�k� and K J dimensional
perturbation vectors a�k�.

To complete the discussion of the algorithm, we discuss the starting and ending
conditions. To start the iterations, we initialize pk � 1=K and e�k� to a random sample
from a normal distribution with zero mean and unit variance. Each e�k� is normalized
to unit length. As the model log likelihood L depends on the starting condition, we
typically run the algorithm multiple times and keep results from the run with the
highest model log likelihood.

As stopping criterion we use a combination of the change in unit vector and as-
signment matrix. As results hardly depend on the details of the stopping criterion we
do not detail this any further.

1.2.7 Consensus clustering for the assignment probabilities

The assignment probabilities computed by our algorithm depend on the starting con-
dition and the number of clusters. To make our approach robust we run the basic
MPPCA algorithm in two nested loops and average the assignment probabilities. The
inner loop runs for 100 times and is designed to exclude local maxima. Only the ten
runs with the highest model log likelihood L are kept. The outer loop is designed
to vary the cluster number K. We varied K between 3 and 12 (Figure 3). After run-
ning the algorithm with R � 100 different restarts and number of clusters we obtain
soft assignment matrices Q1; : : : ;QR. We average the assignment probabilities in a
co-occurrence matrix C [4]. Each entry Cjl indicates the probability that over R runs
two perturbations j and l occur in the same cluster. We define it as follows:

Cjl �
1
R

KX
k�1

RX
r�1

q�r�kj q
�r�
kl : (11)

or better visualization we order all co-occurrence matrices using the algorithm de-
scribed in [2]. To obtain robust cluster probabilities, we decomposed the consen-
sus co-occurrence matrix C by fuzzy additive clustering into J consensus assignment
probabilities rj ([3]). Each of the J rj is a 3-dimensional vector giving the assignment
probability to belong to each of the three clusters. The consensus assignment proba-
bilities are computed by minimizing the following loss function:

f�R� �
JX
j�1

JX
l�j�1

�Cjl � rTj rl�2;

with R denoting the J by K matrix with columns rj , see Figure S3. We solved the
optimization problem by iterative row-wise quadratic programming as suggested in
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[3]. As both the co-occurrence matrices for each cluster number as the consensus one
showed three noticeable clusters (Figure 3), we used J � 3 clusters for this final step
of our procedure.

1.3 Entropy and perturbation size

1.3.1 Analysis of perturbation size and entropy of cluster assignment probability

We hypothesize that larger perturbations (further away from the control condition)
are more likely to fall in a single cluster. To quantify the “size” of a perturbation we
used the root-mean-square (RMS) as this measure is insensitive to missing data. We
calculated the RMS for perturbation j from the data matrix X of dimension J � 121
by 3 with:

RMSj �

vuuut 1
M�j

M�jX
m�1

x2
jm; (12)

with indexm running over the non-missing data andM�j denoting the number of non-
missing variables. To quantify how strongly a perturbation was clustered into one of
the three clusters we used the entropy defined as:

Ej �
3X
k�1

�qkj logqkj; (13)

with log denoting the natural logarithm. In Figure S4 we plot Ej as a function of RMSj
confirming our hypothesis that larger perturbations are more likely to be assigned to
a single cluster. For the analysis whether perturbations of a gene were assigned to
different clusters we excluded perturbations with small perturbation size (RMS < 0.2)
since these tended to distribute evenly over the clusters due to their large variance.

1.3.2 Entropy analysis to quantify cluster specificity

Since we used a “soft” probabilistic approach the distributed clustering of perturba-
tions of the same gene could be due to either non-specific clustering with more or
less evenly distributed cluster probabilities, or specific clustering with assignment of
perturbations to distinct clusters with high probability. The first scenario suggests a
gene with a unique function that clusters poorly with other genes. The second sce-
nario reflects a gene involved in different steps in release with individual perturbations
affecting a single step only.

In order to quantify the cluster specificity of multiple perturbations j from gene
i we compared the mean entropy (ME), defined as the average of the entropies Ej of
the individual perturbations, with the entropy of the mean (EOM), calculated using eq.
13, with qkj � mean�q�i�kj �, the average cluster probabilities for the perturbations of
gene i. By construction, EOM � ME but if EOM � ME the individual perturbations are
clustered similarly. However, if EOM � ME individual perturbations are assigned to
different clusters with high probability.

Whereas genes with all perturbations in one cluster showed a small increase of
the entropy of the mean (EOM) compared to the mean entropy (ME) (Cplx 8%, Mecp2
0.5%, Snap25 5%), this increase was much larger for genes with perturbations assigned
to multiple clusters (Cadps 66%, Psen 28%, Snapin 53%, Stxbp1 19%, Syt 147%, Unc13
55%), indicating that for these genes cluster specificity was high.
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1.4 Analysis of unit vectors

We observed that the unit vectors vary little between restarts with the same cluster
number K. Hence, the unit vectors reported in Figure S5 are from the run of the basic
MPPCA algorithm with K = 3 with the highest log likelihood.

The release model can be viewed as a constraint on the possible unit vectors, that
lie on the unit sphere spanned by the functional variables A, RRP and Pv . Geomet-
rically, the locus of unit vectors consistent with the release model consists of the
intersection of the plane defined by eq. 2 with the unit sphere. Introducing longitude
0 � � < 2� and co-latitude ��=2 � � � �=2 we define:

A � sin�
R � cos� cos�
p � cos� sin�

Combining this with eq. 2 we get for the locus of points on the unit vector sphere
consistent with the release model:

tan� � cos�� sin�;

which describes a great circle on the unit sphere. In orthographic projection (viewing
the unit sphere down the A axis), this great circle becomes an ellipse with a long axis
at orientation 135 degrees relative to the RRP-axis and an aspect ratio of 1=

p
3 (Figure

S5).

1.5 Analysis of pairwise proportionality with orthogonal least squares

In order to interpret the clusters using the assignment probabilities we fitted four
proportional linear models (Figure 4). Denoting the functional variable plotted on the
horizontal axis with x and the one plotted on the vertical axis with y , the four models
are y � �x, y � 0, y � x and x � 0. Given a set of data points �xj; yj� we pick
the model with the smallest orthogonal distance. We discuss this first for the “no
clustering” case, left-hand column of subplots in Figure 4A. The orthogonal distance
of each data point relative to each of the four models is given by:

Dj;y��x � jxj �yjj=
p

2

Dj;y�0 � jyjj
Dj;y�x � jxj �yjj=

p
2

Dj;x�0 � jxjj:
Using m 2 �1; : : : ;4� to index the models, the best model minimizing the sum of
distances from each data point, is given by:

m� � argmin
m

JX
j�1

D�m�j : (14)

In the other three columns of Figure 4A, we weigh each orthogonal distance with
cluster assignment probabilities rkj normalized for the average cluster assignment
probability. In detail:

rkj � qkjPJ
j�1 qkj

m�
A�k� � argmin

m

JX
j�1

rkj D
�m�
j ;
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for each of the three clusters k 2 �1; : : : ;3�.
In Figure 4B, we include the frequency of spontaneous release F in the analysis.

Just as in the left-hand panels of Figure 4A, in the left-hand panels of Figure 4B, we
use the unweighted distance of eq. 14. In the other three columns of Figure 4B, we
weight each orthogonal distance with cluster assignment probabilities tkj normalized

for the number of perturbations per gene, denoted by N�i�j . In detail:

tkj � qkj
N�i�j

m�
B �k� � argmin

m

JX
j�1

tkj D
�m�
j ;

for each of the three clusters k 2 �1; : : : ;3�.
To validate whether the proportional linear models capture the information con-

tained in the dataset we conduct the following analysis. Given the input data matrix
xjm we randomly permute its columns and rows. This corresponds to the situation
when a normalized perturbation can have, for example, in place of functional variable
A a value that corresponds to the functional variable Pv of some other perturbation.
Once the dataset is permuted, we perform the consensus clustering analysis and fit
the four proportional linear models as described above. We repeat the randomization
1000 times and record the orthogonal error of the four models averaged over the clus-
ters for every repetition. From this we construct the histogram depicted in Figure S6
where the vertical line corresponds to the average orthogonal error obtained from the
original (not permuted) dataset. We note that the difference between the permuted
and original data is statistically significant (p < 0.001) as none of the 1000 random
permutations had a lower average orthogonal error than the original data set.

1.6 Contingency analysis of gain-of-function vs loss-of-function mutants

To support the idea that gain-of-function mutants are significantly more likely than
loss-of-function mutants to be assigned to the RRP prop 1=Pv cluster, we performed
a contingency analysis. Conventionally, one uses the Pearson �2-test to investigate
whether cluster assignment probabilities are independent of mutant class (gain-of-
function or loss-of-function) [1]. However, the Pearson �2-statistic is only �2 dis-
tributed for a large number of cases, whereas we have only 12 genes. Secondly, the
cluster assignment probabilities are graded not binary as in conventional contingency
analysis. Thus, exact tests, like Fisher’s exact test are impossible. Hence, we opted for
a random permutation test as follows.

First, we averaged the assignment probabilities for those genes with more than
one perturbation (see Table S5). Second, we calculated the Pearson �2-statistic for our
sample of 12 genes and found its value to be 3.48, indicated with a vertical red line in
Figure S7. Third, we randomly permuted the mutant class of the genes 106 times and
calculated a histogram of Pearson �2-statistic values, indicated in blue in Figure S7.
Lastly, we counted the number randomly permuted Pearson �2-statistic values larger
than the observed one of 4.14 (6 values in our case). The p-value from the random
permutation test is then 6 10�6.
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