Text S2

Here we demonstrate that several of the test statistics described in this manuscript may show sensitivity
to the presence of main effects at one or both loci, rather than showing sensitivity purely to interaction
effects. For simplicity, we start by considering a 2 x 2 table for binary variables, before extending our
results to the usual 3 x 3 SNP genotype table. We show that the 2 x 2 table has a desirable property
corresponding to the fact that, in the presence of a main effect, the odds ratio (representing association
between the variables) is identical when calculated within a sample of cases as when calculated within
a sample of controls. We then investigate to what extent this desirable property is inherited by various

test statistics based on the usual 3 x 3 genotype table.

Invariant property of odds ratio in 2 x 2 table

Suppose that individuals in general population have measurements of two dichotomous variables G and
H (e.g. relating to genotype at loci G and H) that take values in {0, 1}. The distribution of the variables

in the general population may be expressed in the following the 2 x 2 table:

H
G 1 0
1| Qun Qo
0 | Qo1 Qoo

in which Q;r = P(G =j,H =k) for j,k=0,1.

The objective is the odds ratio representing association between the variables in the 2 x 2 table:

QllQOO
Q10Qo1”

which is calculated independently for case and control samples and is used to detect interaction. Let the
probability that an individual with G = j and H = k is affected be f;, = P(D|G = j,H = k), where
D represents the event that an individual is affected (diseased). Under such specification, frequencies of

case and control populations are respectively given by QA jr = % and Qn jr = %, where K



denotes the prevalence, i.e., K = P(D). Then, the odds ratios for case and control samples are given by

Qa,11Q 4,00 _ f11fo0 Q@11 Qoo
Qa,01Qa10  forfio Qo1Qio’

and

Qn11Qno0 (1= fi1)(1 = foo) Q11Quo

Qno01Qni0 (1= for)(1 — fi0) QuiQ1o’

respectively. From these expressions, we can see that the odds ratios for case and control samples are in
general not identical. However, if there is no effect at either locus (i.e. fj is constant), or if only one of
the loci has a main effect, they are identical.

To see this, assume that fio = fi1 = a = % and foo = fo1 = b= % i.e. without loss

of generality G has main effect. (The argument for H is the same). In this case, we have the following

distributions in the case and control populations respectively:

Cases H Controls H

G 1 0 G 1 0

1 aQu1 aQio 1 (1-a)Q11 (1—a)Q10
K K (1-K) (1-K)

0 bQo1 bQoo 0 (1-b)Qo1 (1-b)Qoo
K K (1-K) (1-K)

The fact that fio = f11 = @ and foo = for = b means that these terms (or 1- them), together with K

and (1 — K), cancel from the odds ratios calculated from each of the above tables, and we have

Qa11Qa00  On11QNno00  Q11CQ00
Qa,01Qa,10 Qnolni0 Qoi1Rio

Thus, any statistic based on the difference of the odds ratio between cases and controls is valid in the
presence of a main effect at one locus. In addition, any statistic based on whether the odds ratio in cases
differs from 1 is valid provided % =1, i.e. provided there is no population-level association between

the variables.

exp(atBI(j=1)+~1(k=1))
Texp(a+Bl =D+ (k=1))

Consider now the presence of main effects at both loci, so that fj, = (where
I(E) represents an indicator variable for the occurence of event E). We no longer have the cancelling of
fix or (1— f;x) terms that occurs in the presence of a main effect at one locus, and thus we may observe a

difference in the odds ratio between cases and controls, even when no interaction effects exist. However,



if the disease is sufficiently rare, we find that the required terms do cancel, and the odds ratio in cases is
again equal to that in controls. To see this, note that for a rare disease, with main effects at both loci,

we may write
e TBI([G=1)+~I(k=1)

fiw =1 T eatBIG=D)1~1(k=1)

~ O HBIG=1) 41 (k=1)

Thus we may write f1; = e®t9tY = ABC, f19 = e®™# = AB, fo; = e*t7 = AC and fo = e® = A, where
A=e* B =e¢P and C = e7. We have the following distributions in the case and control populations

respectively:

Cases H Controls H

G 1 0 G 1 0
1 AB?{QM ABI?w 1 Qi1 Qo
0 ACQu  AQw 0 Qo1 Qoo

(since, under the rare disease assumption, the distribution in controls is the same as in the general
population). When calculating odds ratios from each of the above tables, the A, B, C terms cancel and

we have
Qa11Qa00  Qn11Qno00  Q11Q00
Qa,01Qa,10 Qnolni0 Qoi1kio

Thus, under a rare disease assumption, any statistic based on the difference of the odds ratio between

cases and controls is valid in the presence of main effects at both loci. In addition, any statistic based
on whether the odds ratio in cases differs from 1 is valid provided % =1, i.e. provided there is no

population-level association between the variables.

Invariant property of odds ratio from 3 x 3 table as used in various tests

Here we investigate whether or not the invariant property holds for various previously-described statistics
for detecting gene-gene interaction. All statistics are calulated based on tabulating genotypes at loci G

and H in cases and controls, as shown in Table 1. Assume that only G has main effect, that is, we

e th2
1+extB2

e th1

Treatsr and

define the penetrances by a = P(D|G = G1G1) = b = P(D|G = G1G,y) =

o4

¢ = P(D|G = G2Gs) = Trew- We express the distribution of genotypes in the general population in the

following the 3 x 3 table:



H

G 2 1 0

2 | Q2 Qa Qo
L | Q2 Qu Qo
0 | Qo2 Qo Qoo

in which Qjx = P(G = j,H = k) for j,k =0,1,2, and ¢ and j refer to the number of copies of G; and

H,. We then have the following genotype distributions in the case and control populations, respectively:

Cases H Controls H

G 2 1 0 G 2 1 0

) aQa2 aQ21 aQ20 ) (1-a)Qa22 (1-a)Q21 (1—-a)Q20
K i i a—K) a-K) 0-K)

1 Q12 bQ11 bQ10 1 (1-b)Q12 (1-0)Q11 (1-0)Q10
K K i 1-K) a-K) a—K)

0 cQo2 Qo1 Qoo 0 (1=¢)Qo2 (1—=c)Qo1 (1-2c)Qoo
K K K a-K) a-K) 0-K)

where K denotes the prevalence, i.e., K = P(D).

Joint effects statistic

Our new joint effects statistic is based on deleting rows and columns in the above 3 x 3 tables in order
to create four sets of 2 x 2 tables, from which the odds ratio for each of the four top left cells, relative to
the bottom right cell, may be estimated. We delete, in turn, the row and column corresponding to each

of the four top left cells, resulting in the following four sets of tables for cases and countrols:

Cases H Controls H
G 1 0 G 1 0
Top row and left column deleted:
1 bQ11 bQ1o 1 (1-0)Q11 (1-0)Q10
K K (1-K) (1-K)
0 cQo1  cQoo 0 (1—0)Qo1 (1=2)Qoo
K K (1-K) (1-K)




Cases H Controls H
G 0 G 2 0
Top row and middle column deleted:
1 bQ12 bQ10 1 (1-0)Q12 (1-5)Q10
K K (1-K) (1-K)
0 cQo2 cQoo 0 (1-¢)Qo2 (1—¢)Qoo
K K (1-K) (1-K)
Cases H Controls H
G 1 0 G 1 0
Middle row and left column deleted:
92 aQ21 aQ20 2 (1-a)Q21 (1—a)Q20
K K (1-K) (1-K)
0 cQo1 Qoo 0 (1-0)Qo1 (1—¢)Qoo
K K (1-K) (1-K)
Cases H Controls H
G 2 0 G 2 0
Middle row and middle column deleted:
2 aQ22 aQ20 2 (1-a)Qa22 (1—a)Q20
K K (1-K) (1-K)
0 cQo2 cQoo 0 (1-0)Qo2 (1-0)Qoo
K K (1-K) (1-K)

When estimating the odds ratio for one of the four top left cells of the 3 x 3 table, relative to the bottom

right cell, we make use of one of these pairs of 2 x 2 tables. Thus the desirable property (corresponding
to the fact that, in the presence of a main effect, the odds ratio i;, should be identical when calculated
within a sample of cases as when calculated within a sample of controls) is inherited directly from the
2 x 2 table situation described earlier.

Consider now the presence of main effects at both loci:

_explat BT = 1) + Bl (G = 2) + Ik = 1) + 7l (k= 2))
L+ expla+ Bul(j = 1) + Bl (G = 2) + 1l (k = 1) + 721 (k = 2)

fjk

(where f;, represents the penetrance associated with possessing j copies of the G allele and k copies of
the Hy allele). As in the 2 x 2 table situation, in the presence of main effects at both loci, the desired

cancelling of terms when calculating odds ratios no longer occurs. However, if we make a rare disease



assumption, we may assume that

Fie e @@ BIG=DHBI =D 4 (k=1 47T (k=)

Writing A = e*, B; = efi and Cj = €%, we may write the genotype distributions in case and control

populations as follows:

Cases H Controls H

G 2 1 0 G 2 1 0
2 AB2CaQaz  AB2CiOn  AB2G 2 Q22 Q21 Q2
1 Ao ARC U 1 Q12 Quu Qo
0 AU Al Aol 0 Qo2 Qo1 Qoo

(since, under the rare disease assumption, the distribution in controls is the same as in the general
population). When calculating odds ratios based on deleting rows and columns from each of the above
tables, the A, Bj, C}, terms cancel in the same way as in 2 x 2 table situation. Thus, for a rare disease,
even when there are main effects at both loci, the odds ratio i;, should be identical when calculated

within the sample of cases as when calculated within the sample of controls.

PLINK’s fast-epistasis statistic

Consider the odds ratio employed in PLINK’s fast-epistasis statistic [1]. In the presence of main effects

at a single locus, using the same notation as above, the odds ratio calculated for cases is

aQas + aQ21;er12 + bau Qoo + CQHH;?QM + b%n
ORFE,4 = X

Qo2 + CQOl;bQ12 + bcill aQa0 + anl-Q‘erm + bau

while that for controls is obtained by replacing a,b and ¢ by 1 —a,1 —b and 1 — ¢ in the above equation.

These two quantities are not in general identical. However, for general population under HWE, we have

OR (al/ffl + a11t12 + bbar1n + bW) o (CUJ%Q + 2122 + bib12tPes + b% )
FE,A =

CYBy + crthan + bihgripny + praERGTII ahdy + ahrathny + biprgthyy + bPLL2EIzY
Ay (11 + ¥12) + 01 +¥22) — bﬁ% (a2 + ¥21) + (Y12 + ¥11) — 622%
= p % 7
c(o1 + 122) + (11 + V12) + bﬁi’l a(12 + P11) + (g + 1) + b%




where Ay and D, relate to the log odds ratio and linkage disequilibrium parameters A(6) and D (see

Text S1 and Equation (3) in main manuscript) calculated with respect to the general population i.e.

P11)22
Y1221

Ay = log

and

D’di = wll - (¢11 + ¢12)(¢11 + 1/]21) = 1/)111/122 - 1/}12'()[}21

where 1)1, is the haplotype frequency of haplotype G;-Hj. The expression for ORpg, 4 reduces to 1 if
Ay = 0and Dy = 0. By a similar argument, the expression for the odds ratio in controls ORgg, y reduces
to 1if Ay =0 and Dy, = 0. Therefore, in the presence of a main effect at a single locus, the fast-epistasis
statistic possesses the invariant property, provided the two loci are not in LD.

Now consider the situation where there are main effects at both loci, but the disease is rare. Using

the same notation as for the joint effects statistic above, the odds ratio calculated for cases is

_ [(4AB3(02Q22+2ABC1Q21+2AB1CoQ12+ AB1C1Q11
ORrra =

4ABQ20+2AB2C1Q21+2AB1Q10+AB1C1Q11

< 4AQu0+2AC1Qu1+2AB1Q10+AB1C1Q11 )
4ACQo2+2AC 1 Qo1 +2AB,1CoQ12+AB1C1 Q11

while that for controls is obtained by replacing terms involving A, AB;, AC), and AB;C}, with 1 in the

above equation. Simplifying, we have

ORpp 4 — (4BgC’2Q22+232C1Q21 +23102Q12+3101Q11) ><( 4Q00+201Qo1+2B1Q10+B1C1 Q11 )
} 4B2Q20+2B201 Q21 +2B1G10+ 51010 4C5Q02+2C1Qo1+2B1C2Q 12+ B1C1Q11
and
ORpg N = <4Q22+2Q21+2Q12+Q11) » (4Qoo+2Q01+2Q10+Q11>
’ 4Q20+2Q21+2Q10+ Q11 4Q02+2Q01 +2Q124+ Q11

These two odds ratios ORpg,4 and ORpg,n are not in general identical. If we assume a general

population in HWE, we have



ORpp A — <4B2(]21/)%1 +4ByChp119012+4B1 Coth11th21 +2B1 C (th111h22 + %2%1))

4Botp3y +4BoCrip11¢p12+4B1119090 +2B1C1 (11992 + P129021)

( 4ap3y +4C 129191 +4B1912020 +2B1 C1 (Y1122 + P12t21) >
4Co13, +4C1121 122 +4B1 Cath11191 +2B1C1 (11922 + 121021)

Yr1than [ 4B2(Cath1r + C1¢12) + 4B1(Catpar + Crvhaz) + 28104 (wlzw21 P22)
P12t ( 4B (12 + C19p11) + 4By (22 + C1¢pa1) + 2B1C4 (% — a1) )
4(hag + C11pa1) + 4By (Y12 + Crap11) + 2B1C1(w12¢21 P11)
) ( 4(Catha1 + Crpaz) + 4B1(Cathrr + Criprz) + 23101(%(;7;221 - 7/112)>
Y (432(6'21/111 + C19p12) + 4B1(Cothar + Crapaz) — QBlClgﬁ>
4B (12 + C13p11) + 481 (22 + C1tho1) + 2B1Cy 5“’
y ( 4(tha2 + Crtba1) + 4B1 (Y12 + C1¢11) — 2B1C1 D”’ )
4(Corpar + Crthag) + 4B1(Catp11 + Cith2) + 23101 1/,;1

If Ay, =0 and Dy = 0, this expression reduces to:

OR B (32(021/)11 + C11p12) + B1(Catbay + 011/)22)> ( (Y22 + C1921) + B1(Y12 + C1¢11) )
FE,A = X (

By (12 + C19p11) + B1 (22 + C11pa1) Catpa1 + Cr1haz) + B1(Cathr1 + Crh12)

Although this is not in general equal to ORpg,n (which equals 1 when Ay, = 0 and D,, = 0), for specific
choices of By, By, C1, C5, these odds ratios may be equal. In particular, for the choice of values used in
our simulation Scenario 5¢ (By = Cy = 3; By = Cy = 9) we find that ORpg 4 = % X % =1= ORpg n.
Thus, assuming a rare disease and no population-level LD, the fast-epistasis method does possess the
invariant property under this particular choice of simulation parameters, which explains why the type
1 error is correct for the adjusted fast-epistasis method in simulation Scenario 5¢ (when there is no
population-level LD). More generally, if we assume a multiplicative model for the effects of alleles at both
loci (i.e. By = B, C; = C, By = B?, Cy = C?, for some parameters B and C), which is equivalent to an
additive model on the log odds scale, then we find ORpg 4 = 1 = ORpg n. Alternatively, if you assume
a recessive model (i.e. By =1, C1 = 1), and also assume no population level LD (so Ay, = Dy, = 0), then
the log odds ratio in cases again reduces to 0, as required. This explains why the type 1 error is also
correct for the adjusted fast-epistasis method in simulation Scenario 5d (when there is no population-level
LD). Therefore, assuming a rare disease and no population-level LD, the adjusted fast-epistasis method

does indeed possess the invariant property (and thus will be valid in the presence of main effects) when



alleles at both loci act either additively or recessively on the log odds scale.

Wellek and Ziegler (2009) correlation coefficient

Consider application of the Wellek and Ziegler’s [2] correlation coefficient. We use the same notation as
for the joint effects statistic above. For a general population under HWE, using the parameterisation
Y11 = pu+ Dy, P12 = pv — Dy, 21 = qu — Dy, and 922 = qv + Dy, where ¢ =1 —p and v =1 — u, the

genotype frequencies @);; may be represented as a quadratic function in Dy:

Qa2 Q21 Qa0

Q12 Qui Qo

Qo2 Qo1 Qoo
(pu+ Dy)? 2(pu+ Dy)(pv — Dy) (pv — Dy)?

= | 2(pu+ Dy)(qu—Dy) 2(pu+ Dy)(qu+ Dy) +2(pv — Dy)(qu — Dy)  2(pv — Dy)(qu + Dy)
(qu — Dy)? 2(qu — Dy)(qu + Dy) (qv+ Dy)?

=ghT + 2Dwagaz + DieeT,

T ag = (p,q—p,—q)T, an = (u,v—u, —v)T and e = (1, -2,1)7.

where g = (p,2pg, ¢*)", h = (v*, 2uv, v?)
Consequently, ;; can be written as g;h; +2Dyag ;an,; + Dieiej.
If we apply the above formula for @;; to the genotype frequencies in the case population that are

represented by the left hand table on page 6 of this Text S2, we obtain:
QA,ij = ABZCJ(gZhj + 2D¢(lgy7;ah7j + beeiej)/lﬂ (].)

where we defined By = Cy = 1 as a matter of convenience. Since K = Zi,j AB;C;(gihj +2Dyag ;an,; +

Dfpeiej), we have

K=A (Z Bz'gi)(z Cjihj) + 2D¢(Z Biag,i)(z Cjan,;) + Di(z Biei)(z Cje;)
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If we define d = (2,1,0)7, the Wellek and Ziegler correlation coefficient for cases is written as

. B > i didiQaiy — (25 diQaiz) (o djQa5)
Wz,A = 2 2 2 2
\/Zij d7Qa,ij — (2, diQa,ij) \/ i 47Qa,i; — (3245 djQa5)

Applying the above formula to the numerator of Rwy 4, we have that

Z did;Qaij — (Z diQA,ij)(Z d;jQa.ij)
ij ij ij

(32 diBigi) (32, d;Cjhy) + 2Dy (32, diBiag i) (32 ; d;Cjan,j) + Dy (3, diBiei) (3 ; d;iCie;)
KA
(32 diBigi) (32 Cihy) + 2Dy (3, diBiag ) (32 ; Cjan,j) + D (32, diBiei) (32 ; Cjej)
K/A
(32 Bigi) (32 diCihy) + 2Dy (32, Biagi)(3-; d;Cjan ;) + D3 (3, Biei) (32 ; d;iCje;)
(32 Bigi) (22 Cihy) + 2Dy (3, Biag,i)(32; Cjan,;) + D3 (32, Biei) (32, Cjej)

The parameterisation represented by the left hand table on page 6 of this Text S2 corrresponds to
modelling either main effects at both loci, under a rare disease assumption, or main effects at a single
locus, without making any rare disease assumption. We consider each of these possibilities in turn. First,
we consider the quantity (2) under the situation where a single main effect at locus G is present. This
corresponds to reparameterising A = ¢, By = a/c¢, By = b/c and Cy = Cy = 1, so that the left hand table
on page 6 becomes equivalent to the left hand table in the middle of page 4 of this Text S2. By noting
that 37,9, =3, hj=1and > ,a9:; =) ;an; =), € =0, Equation (2) is simplified to

(22 diBigi)(2u) + 2Dy (32, diBiag,i)  (3_; diBigi) o (X2 Bigi)(2u) + 2Dy (>, Biag i)
K/A K/A (X2 Bigi)
(5 By~ 5l
Zi B;gi

a 2p+22(a—p)—
{2;p+g(q—p)}—ﬁ @)

2p2 +22pg + ¢

— 2D,

=2Dy

This quantity reduces to 2D, if a = b = ¢, i.e. no main effects, which coincides with Equation (4) of [2].
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Similary, the first term of the denominator of Ry 4 is expressed as

- d;B;g:)?

a b (2%p2 4+ 221)(1)2 \/a b
4=p2 4922 _ el TR Zp2 492 2
\/( Cp cpq) % 5 2% P Cp Cpq q

which reduces to /2pq if a = b = ¢. For the second term of the denominator of Rwz 4,

> d2Qaij— (O djQai)?

(Z Bigi)(z d3h;) + 2D¢(Z Biag,i)(z dZan;) + QDi(Z Biei)(z de;)

1/2
AGS Bigi) (X djihy) + 2Dy (3 Biag;;i%j djan ;) +2D5 (3, Biei) (2, djej)}z] / JETA

s u ) Q. 2
[(Zi Bigi)(2u)(2u + v) + 2Dy (Y, Biag,i)(2u + 1) + 4D3(Y, Bye;) — {2 Prad B8P0 (0 i)}

}1/2

2p2+22pgtq?
2 b 2
\/ ep* +22pg +q

When a = b = ¢, the last display reduces to v/2uv because > Bigi=1and ), Biag; = 0. These results
generalize those obtained by [2] and show that the Wellek and Ziegler correlation coefficient reduces to
Dy //pquv (i.e. Pearson’s correlation coefficient based on haplotypes) if a = b = c.

The three quantities above and Rwyz 4 may vary depending on the choice of a and b. Note that,
when a main effect is present at locus G, the corresponding quantities for the control population are
obtained by setting A=1—¢, By =(1—a)/(1—¢),B1 = (1—-50)/(1 —c¢) and Cy = C; = 1. Thus, Wellek
and Ziegler correlation coefficients Ry calculated for case and control populations are in general not
identical. In other words, the Wellek and Ziegler correlation coefficient does not possess the invariant
property. However, if Dy, = 0, Equation (3) becomes zero for any choice of ¢ and b. Therefore, the Wellek
and Ziegler correlation coefficient does possess the invariant property, provided the two loci are not in
LD.

The above argument can be extended to the presence of main effects at both loci, provided we make a
rare disease assumption. It can be seen that if Dy, = 0 the quantity (2) reduces to zero for arbitrary choice

of By, B1,C5, C;. Because the denominator of Rz is positive, Rwz 4 = 0. This is also understood from
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the fact that if Dy = 0 the genotype frequencies are expressed as

Qua,ij = A(Bigi)(Cjh;) /K,

which implies the statistical independence between marginal distributions of each locus and the correlation
coefficient should be zero. Under a rare disease assumption, the Wellek and Ziegler correlation coefficient
for the control population is zero. Consequently, even with main effects at both loci, the Wellek and

Ziegler statistic possesses the invariant property assuming a rare disease and no population-level LD.

Wu et al. (2010) statistic

The Wu et al. (2010) [3] odds ratio is based on estimated haplotype frequencies, estimated under the
(potentially incorrect) assumption that the haplotypes come together independently (i.e. are in HWE) in
cases. This quantity is not tractable because HWE does not necessarily hold in cases under the presence
of main effects at either locus [4]. There is, therefore, in general, no guarrantee that the invariant property
is satisfied, although it is possible that under certain specific genetic models it may hold. We refer the
reader to our simulation study for evaluation of the properties of the Wu et al. (2010) odds ratio in

various situations.

Ideal Wu statistic

The ideal Wu statistic is calculatable if phase information is available. Consider the possible configurations
of phased diplotypes (combinations of haplotypes) that an individual can possess at two diallelic loci, G
and H, with locus G having alleles G; and G2 and locus H having alleles H; and H,. In Text S3, we

show that, assuming no parent-of-origin effects, the diplotype probabilities in cases and controls may be

written:
Cases Maternal haplotype
Paternal haplotype G1-H, G1-H, Go-H, Go-Hy
G1-Hy Vi fun /K Yutiefing/K e fuian /K Yitbea fiise/K
G1-Ho Yo fion /K Yiafioie/ K Yiotar fioor /K iathas fraoe/ K
Ga-H,y Yo fornn /K oraforne/ K Y3 foro1/ K o1tan foraa/ K
Ga-Ho Vootn1foo11 /K haothiafania/ K ogtor faoo1 /K Y3y f2000/ K




Controls Maternal haplotype
Paternal haplotype G1-H, G1-Hs Go-H,q Go-Ho
Gy-H, wi((llj(l)m) wuwﬁigmz) d’llwaiig)flml) wuwﬁgg)flm)
Gi-H, wlzwﬁgz)fmu) wfz((llj{l)zm ¢12¢?1£;)f1221) wnwﬁgg)flm)
Gy-H, 1!’21¢ﬁ£;{2111) wmwﬁggmz) wgl((j:}fg)m) d’mwﬁgg)lem)
Go-Ho 1/1221118912{2211) Yoty S;{m) bz S;{zzm) 3y ((11:;‘(2)222>
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where ;1. is the population haplotype frequency of haplotype G;-Hy, fjrim is the probability of being
diseased for an individual with diplotype G;-H/Gi-H,, and K is the population prevalance. Suppose
main effects exist at locus G, but not at locus H. Then we may write fig1m = a, fikom = forim = b and

fakam = c¢. The diplotype probabilities in cases and controls may be written:

Cases Maternal haplotype
Paternal haplotype | G1-H1  Gi1-Hy Go-Hy  Go-Hy
Go-H, Ynygub  Ynvsh % Ya1daze
Go-H, wgg;(pub wn;(pnb wgz;?zlc w}%c
Controls Maternal haplotype
Paternal haplotype G1-Hq G1-Hy Go-Hy Go-Ho
G| P i Sl s
A e e o
Grffy |Gt sysld B4R samge
Grfls | oapaleh e smpgo S0

The ideal Wu et al. statistic (Equation (4) in their paper) is calculated through counting haplotypes as
observed in the cells of the above two tables. Each cell contributes two haplotypes that then contribute

to the counts in the relevant haplotype categories. This results in the ideal Wu statistic corresponding



14

to an estimate of the following log odds ratio quantity in cases:

(20907 + 2atp11912 + 2001191 200011 22) (26322911 + 2b9a2¢P1a + 2ctanthan + 2c1)3,)
(2ap12¢11 + 2a03y + 20121021 + 2bYh12190) (2090219011 + 2bY21912 + 2¢1P3; + 2ctha11han)
2911 [ath11 4 a1 4 biboy 4 bibaa]20aa [bip11 + bipra + cibar + cibag]
21a]ap1n + athra + bihar + bihaa|20ha1 D11 + bip1a + char + cihao]
og 11122

12921

= log

= 1

while the log odds ratio in controls takes the same form, but with a, b, ¢, replaced by (1 — a), (1 — b),
(1 — ¢) respectively. Since both these log odds ratio quantities reduce to Ay, we find that the odds
ratio calculated separately within case and control samples is invariant even when one locus has a main
effect. Thus, the ideal Wu case/control approach is valid in the presence of main effects at a single locus.
Furthermore, provided there is no population-level LD, Ay, = 0, and so the ideal Wu case-only approach
is also valid in the presence of main effects at a single locus.

Now consider main effects at both loci, so that

ea—&-,{ﬁ I(§+1=3)+L2I(j+1=2)+vy1 I (k+m=3)+~2I(k+m=2)
Fikim = 1 + eotBI(G+1=3)+B21(j+1=2)+711 (k+m=3)+r2 I (k+m=2)

Under a rare disease assumption, we may write

f i A eo¢+ﬁ1 I(§+1=3)+BoI(j+1=2)+v1 I (k+m=3)+~y2I(k+m=2)
jklm =

and we define A = e®, B; = e, By = ¢, C] = e, Cy = €. Then the diplotype probabilities in cases

and controls are:

Cases Maternal haplotype

Paternal haplotype G1-H, G1-Hy Go-H, Go-Hy
Gy-H, wflAIf’zCz wumeABzcl 11111'/1211?3102 wnwzgléwlcl
Gy-H,y wlwnléqBQCl wﬂ;Bz 1&121#21[;431 Cy Y1222 ABy
G-I, wmwl}?Blcz wmm?&cl 3 I?Cz wzlw;(zAcl
Go-H, q/mwu}?Blcl wzwll?ABl 1/)221/;12(1 AC, wiﬁTQA
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Controls Maternal haplotype

Paternal haplotype | G1-H1 Gi1-Hy Go-Hy Gs-Hy

G1-H, Y Yute Yuda Pude
G1-Hj Yot iy Yieter Yiate
Go-Hy Yarhin Yorthre U3 Yt
Ga-Hs Yoohi1 oothrs Yoot Py

(since, under a rare disease assumption, controls have the same diplotype probabilities as the general
population)

The ideal Wu et al. statistic is again calculated through counting haplotypes as observed in the cells
of each of the above two tables. In controls, this calculation results in an estimate of the following log

odds ratio:

(203 + 2¢11012 + 2011921 + 20011%02) (20220011 + 2ha2th12 + 2920021 + 203,)
(2012911 + 292 + 20129091 + 200121022) (20219011 + 2002112 + 2003, + 2921¢92)
29011 [th11 + Y12 + a1 4 Ua2]24Paa[h11 + P12 + a1 + Yoo
2012 (Y11 + V1o + o1 + Y22] 2021 [11 + Y12 4 Y21 + Yoo
o 1122

121091
= A

log

= log

= lo

In cases, the log odds ratio estimated is instead

(Y31 AByCo 4111012 ABo Cr +1p111p21 AB1 Oy +1p111020 AB1 O ) (1220011 AB1 C1 41221012 ABy 4-1921h91 AC1 +103, A)
(V129011 ABoCh +935 ABo 12091 AB1 C1 4129020 AB1 ) (21911 AB1 Co +1021012 AB1 Cy +103; ACo +1p219h20 ACH)
11111 B2Cy + P12 BaCy + 1ha1 B1Cy + 1ha B1Ch]haa [011 B1C1 4 Y1281 + ¢21C1 4 0]
12[1011B2Cy + 12Ba + 1021 B1Cy + 22 B1]21 [Y11 B1Ca + 1012 B1C + 1910 + 1)22Ch |

log

= log

It is not clear that this quantity is in general equal to Ay, i.e. that the invariant property should hold,
when main effects operate at both loci. However, for certain models, the log odds ratio estimated in
cases does turn out to be equal to Ay. In particular, if you assume a multiplicative model for the effects
of alleles at both loci (i.e. By = B, Oy = C, By = B%, Cy = C?, for some parameters B and ('), which

is equivalent to an additive model on the log odds scale, then, following some algebra, we find that the
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log odds ratio reduces to Ay as required. Alternatively, if you assume a recessive model (i.e. By = 1,
C7 = 1), and also assume no population level LD (so Ay, = Dy, = 0), then the log odds ratio in cases also
reduces to 0, as required. These observations partly explain the results seen in our simulations (Scenarios
5¢ and 5d). The theory presented here relies on a rare disease assumption. However, the results from
simulation Scenarios 5a and 5b suggest that, under these particular models, the performance of the ideal
Wau statistic is generally quite robust to the presence of main effects at both loci, even without invoking

a rare disease assumption.
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