Magyar et al. *Arabidopsis* E2FA stimulates proliferation and endocycle separately through RBR-bound and RBR-free complexes

Supplementary information

Supplementary materials and methods

Construction of the $35S::E2FA^{ARB}/DPA$ and the $35S::E2FA/DPA^{ADB}$ lines

The HA- tagged E2FA^{Δ RB} mutant (Magyar et al. 2000) was PCR amplified by using 5' and 3' end primers containing SalI or BamHI extension, respectively. The PCR product was digested by Sall and BamHI and cloned into the Sall and BamHI sites of pLBR19 plasmid, which contains the cauliflower mosaic virus (CaMV) 35S promoter with a double enhancer sequence (p70). The p70/HA-E2FA^{ΔRB}/NOS terminator cassette was released by SacI and XbaI and cloned into the SacI and XbaI sites of pBINPLUS binary vector (van Engelen et al. 1995). To generate the mutant DPA (DPA^{ΔDB}) 108 nucleotides was deleted (representing a 36 amino acid long region comprising the DNA binding domain from 100 to 135 amino acid position in DPA the protein) by using chimeric primer (5'а ATCCTTTTTGCAGGTAATCTCATTTCATTCAAAGG-3') in a one tube PCR reaction according to the method as described (Pont-Kingdon 2003). The PCR product was cloned into the 2xMyc-epitope tagged pBluescript SK plasmid (Magyar et al. 2000) and the mutation was verified by sequencing of the cloned product. The Myc-tagged DPA^{ΔDB} was than released by HindIII and PstI and cloned into the HindIII and PstI sites of pLBR19 plasmid. Next the p70/Myc-DPA^{ΔDB} /NOS terminator was cloned into the SacI and XbaI sites of pBINPLUS binary vector.

The HA-E2FA^{Δ RB}, Myc-DPA or Myc-DPA^{Δ DB} proteins were synthesized by using the TNT T7-coupled wheat germ extract kit (Promega) primed with appropriate plasmids. DNA probes were generated by annealing oligonucleotides spanning the regions of interest and by filling in the single-strand overhangs with α -³²P-dCTP using the Klenow fragment of DNA polymerase I. Complementary oligonucleotides were synthesized to generate a double-stranded DNA fragment containing the consensus E2F-binding site or its mutant version in 6 times repetition (wild type E2F binding site: top 5'-gTTTCCGGCCAAtg-3'; and bottom 5'-tcgaTTGGCGGGAAAtgca-3' or the mutated E2F-binding sequence 5'-gTTTCC*aa*CCAAtg-3'; bottom 5'-tcgaTTGG*tt*GGAAAtgca-3') where lower case letters represent overhangs or the mutated sites. The conditions for the DNA binding reaction and electrophoresis were as described (Kosugi and Ohashi 1997), except that E2F-probe was incubated with 1 μ l of *in vitro* translation or co-translation products. The antibody supershift assay was carried out by using non-specific IgG or specific anti-HA or anti-Myc monoclonal antibodies as described before (Kosugi and Ohashi 1997).

Supplementary References

- De Veylder L, Beeckman T, Beemster GT, de Almeida Engler J, Ormenese S, Maes S, Naudts M, Van Der Schueren E, Jacqmard A, Engler G et al. 2002. Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor. *EMBO J* **21**: 1360-1368.
- De Veylder L, Beeckman T, Beemster GT, Krols L, Terras F, Landrieu I, van der Schueren E, Maes S, Naudts M, Inze D. 2001. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. *Plant Cell* **13**: 1653-1668.
- Dewitte W, Riou-Khamlichi C, Scofield S, Healy JM, Jacqmard A, Kilby NJ, Murray JA. 2003. Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. *Plant Cell* **15**: 79-92.
- Horvath BM, Magyar Z, Zhang Y, Hamburger AW, Bako L, Visser RG, Bachem CW, Bogre L. 2006. EBP1 regulates organ size through cell growth and proliferation in plants. *EMBO J* 25: 4909-4920.
- Kosugi S, Ohashi Y. 1997. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. *Plant Cell* **9**: 1607-1619.
- Magyar Z, Atanassova A, De Veylder L, Rombauts S, Inze D. 2000. Characterization of two distinct DP-related genes from Arabidopsis thaliana. *FEBS Lett* **486**: 79-87.

- Menges M, Doczi R, Okresz L, Morandini P, Mizzi L, Soloviev M, Murray JA, Bogre L. 2008. Comprehensive gene expression atlas for the Arabidopsis MAP kinase signalling pathways. *New Phytol* **179**: 643-662.
- Pont-Kingdon G. 2003. Creation of chimeric junctions, deletions, and insertions by PCR. *Methods Mol Biol* **226**: 511-516.
- van Engelen FA, Molthoff JW, Conner AJ, Nap JP, Pereira A, Stiekema WJ. 1995. pBINPLUS: an improved plant transformation vector based on pBIN19. *Transgenic Res* **4**: 288-290.

Magyar_Supplementary Table I.

		E2FA						RBR1					
Gene ID	Correlation	1	Gene des	cription			Gene ID	Correlati	on	Gene Des	cription		
At2g36010	1.0000	E2F transcr	ription facto	or-A (E2FA)		1	At3g12280	1.0000	retinoblast	oma-relate	d protein (R	BR1)	
At2g31270	0.8431	CDT1a-cycl	in-depende	ent protein ki	nase	4	At2g31270	0.7812	CDT1a-cycl	in-depende	ent protein k	inase	
\t1g04730	0.8345	AAA-type A	ATPase fam	nily protein-C	TF18	12	At1g04730	0.7502	AAA-type A	ATPase fam	nily protein-C	TF18	
\t4g02060	0.8082	prolifera pi	rotein (PRL)		39	At4g02060	0.7094	prolifera p	rotein (PRL)		
t5g08020	0.8041	replication	protein, pu	itative		24	At5g08020	0.7283	replication	protein, pu	Itative		
t3g24495	0.7978	DNA misma	atch repair	protein MSH	6-2 (MSH7)	22	At3g24495	0.7291	DNA misma	atch repair	protein MSH	6-2 (MSH7)	
t1g67630	0.7903	DNA polym	erase alph	a subunit B fa	mily	8	At1g67630	0.7675	DNA polym	erase alph	a subunit B f	amily	
t2g24490	0.7901	replication	protein, pu	Itative		10	At2g24490	0.7548	replication	protein, pu	Itative		
t5g61000	0.7863	replication	protein, pu	Itative									
t2g40550	0.7835	ETG1; E2F ta	arget gene	1		13	At2g40550	0.7495	ETG1; E2F t	arget gene	1		
t2g37570	0.7827	SLT1; Sodiu	um-lithium	tolerant 1		86	At2g37570	0.6824	SLT1; sodi	um-lithium	tolerant 1		
t4g28310	0.7747	expressed	protein			23	At4g28310	0.7290	expressed	protein			
t5g63920	0.7699	DNA topois	omerase II	l alpha, putat	ive	110	At5g63920	0.6735	DNA topois	omerase I	l alpha, puta	tive	
t5g41880	0.7695	DNA primas	se small su	ubunit family		9	At5g41880	0.7555	DNA prima	se small su	ubunit family		
t3g18524	0.7694	DNA misma	atch repair	protein MSH2	2 (MSH2)	6	At3g18524	0.7686	DNA misma	atch repair	protein MSH	2 (MSH2)	
t5g10390	0.7647	histone H3				128	At5g10390	0.6682	histone H3				
t3g27640	0.7590	transducin	family pro	tein									
t3g25100	0.7579	cell divisio	n control p	rotein-related	t								
t3g59550	0.7576	cohesion fa	amily prote	in SYN3 (SYN	3)	155	At3g59550	0.6598	cohesion f	amily prote	in SYN3 (SYN	13)	
t5g43080	0.7569	cyclin, puta	tive			64	At5g43080	0.6909	cyclin, puta	tive			
t1g78650	0.7564	POLD; DNA	directed D	NA polymeras	se	3	At1g78650	0.7847	POLD; DNA	directed D	NA polymera	se	
t1g02970	0.7561	protein kin	ase, putati	ve									
t1g26330	0.7541	DNA-bindin	g protein			103	At1g26330	0.6765	DNA-bindin	g protein			
t1g67320	0.7527	DNA prima:	se, large si	ubunit family		67	At1g67320	0.6890	DNA prima	se, large si	ubunit family		
t5g23420	0.7525	high mobili	ity group (H	IMG1/2) famil	y protein	38	At5g23420	0.7120	high mobil	ity group (I	IMG1/2) fami	ly protein	
t3g42660	0.7513	WD-40 repe	eat family p	rotein		5	At3g42660	0.7791	WD-40 repe	eat family p	rotein		
t3g12170	0.7499	DNAJ heat	shock N-te	rm domain-c	ontaining p	rotein 19	At3g12170	0.7342	DNAJ heat	shock N-te	rm domain-o	ontaining pr	otein
t5g49010	0.7498	DNA replica	ation protei	n-related									
t3g02820	0.7492	zinc knuck	le (CCHC-ty	/pe) family pr	otein	47	At3g02820	0.7014	zinc knuck	le (CCHC-t	/pe) family p	rotein	
- t5g65360	0.7484	histone H3	· · ·	1			_				1		
t1g23790	0.7471	expressed	protein			1							
- t1g07370	0.7393	proliferatin	Ig cell nucle	ear antigen 1	(PCNA1)	17	At1g07370	0.7390	proliferatin	Ig cell nucl	ear antigen 1	(PCNA1)	
t3a12280	0.6927	retinoblast	 oma_relate	d protein (RF	R1)	60	At2rd36010	0.6927	E2E transci	 rintion facto	or-A (E2EA)	. ,	

Magyar_Supplementary Table II.

E2FA

GO-ID	p-value	Description
6996	2,68E-19	organelle organization and biogenesis
6260	7.01E-19	DNA replication
6259	1,16E-18	DNA metabolic process
6325	1,77E-17	establishment and/or maintenance of chromatin architecture
7001	4,74E-16	chromosome organization and biogenesis
6334	1,49E-15	nucleosome assembly
6323	3,81E-15	DNA packaging
7017	7,39E-15	microtubule-based process
7010	2,48E-14	cytoskeleton organization and biogenesis
6333	4,35E-14	chromatin assembly or disassembly
74	2,76E-13	regulation of cell cycle
7018	2,15E-12	microtubule-based movement
6263	2,16E-11	DNA-dependent DNA replication
7049	1,46E-10	cell cycle
6139	6,78E-09	nucleobase, nucleoside, nucleotide and nucleic acid metabolic process

- 6270
 2,34E-07
 DNA replication initiation

 8151
 4,14E-07
 cellular process

 278
 5,25E-06
 mitotic cell cycle

 6310
 9,95E-06
 DNA recombination

RBR1

- KB K1

 GO-ID
 p-value
 Description

 6139
 2,75E-25
 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process

 6259
 6269
 2,05E-23
 DNA metabolic process

 6260
 1,40E-22
 DNA replication

 6262
 1,47E-12
 DNA-dependent DNA replication

 6263
 1,47E-12
 DNA-dependent ONA replication

 6264
 4,20E-09
 RNA processing

 6334
 4,20E-09
 RNA processing

 7010
 2,03E-07
 cell cycle

 704
 4,21E-07
 cell cycle

 704
 4,21E-07
 cell cycle

 7101
 2,03E-07
 cell cycle

 704
 4,21E-07
 cell cycle

 7104
 6,25E-06
 Chromatin assembly or disassembly

 7018
 6,4E-06
 microtubule-based movement

 6337
 4,218-05
 nucleosome assembly

 6338
 4,218-05
 nucleosome assembly

 6331
 1,32E-05
 DNA recombination

 6332
 1,32E-05
 DNA recombination

 6333
 4,41E-06
 bromatin assembly

 7018
 6,4E-05
 microtubule-based movement

 6334
 2,13E-05
 nucleosome assembly

 6310
 1

Magyar_Supplementary Table III.

Gene		forward primer	reverse primer			
g-PCR		-	-			
KRP3 (AT5G48820)		AAGACACAGCACAAGGGAGA	TCTTTGGTTGCTCTGCACAT			
ORC2 (AT2G37560)		TCCCGAATCACAACAACTC	CCACAATAATGGAGCGTTGA			
MCM3 (AT5G46280)		TGGGCAGCACATGAGGAC	CACTTTGTTATCATCTTGCAGTTT			
RNR2 (AT3G27060)		CGCTTGCGTCGAAGGTAT	GAGAATGTTAATCCAGGCATGAG			
CYCB1;1 (AT4G3749	0)	TCAGCAATGGAAGCAACAAG	AGCAGATTCAGTTCCGGTCA			
CYCA2;3 (AT1G1557	0)	TCTTGGGAGATCAGCTTCTACAGC	GGCATAGAGGCAGCACAGTAAAGG			
CYCD3;1 (AT4G3416	50)	GCAGCATAAGTTCAAGTGTGTAGC	AAACCGTAAGAGGCAGCTCTGG			
CDKB1;1 (AT3G5418	0)	TCTGTTGGTTGTATCTTTGCTGA	CATTGCTGCTCAGTTGGTGT			
ACTIN (AT3G18780)		AAATCACAGCACTTGCACCA	TGAGGGAAGCAAGAATGGAA			
PIP2 (AT2G16850)		GCTTCATTCCGCAGCAAC	TCCGATTACATCAAATTAAAACACA			
E2FA (AT2G36010)		CAACCCAGAAACTGCTATTGTT	GTCCGACTCATCATTTTCAAC			
E2FA3'(AT2G36010)		TGTATGAACCAATGGCAGGT	CTCGGTGCTCCTCTACAACA			
E2FB (AT5G22220)		GGACCGAGCGACAACAAA	AGGTGATCTCGTAGCAGTGGA			
E2FC (AT1G47870)		TGCCGTTATGACAGTTCTTTAGGG	AGTGTTCCATCCTCAGCTTCCT			
DPA (AT5G02470)		CTCGACTTCAATAGCACACCTTT	TGAGCGGAGCTATGTTGAGA			
DPB (AT5G03415)		TTTGATTTCAACAGCACTCCA	GCGTGAAATTGTGACAAAAC			
DEL1 (AT3G48160)		TGCTGCCTCGAAATTAGGAGTGG	CCTTCAATGCTCCTGGAATTGCG			
DEL2 (AT5G14960)		ACCATCTCCCAGACCTGACAAC	TCACAAAGTTCTGTGCAAGTAGCC			
DEL3 (AT3G01330)		AAAGGCGGCGTATCTATGATGTG	TCCCTCTTCTTGCCACAATCCC			
RBR1 (AT3G12280)		CGCTTCCATTTTGGTTTTGA	TGAACAACAGCAGCAGCAAC			
EXPANSIN5 (At3g29)	030)	GTACTATTCCCGTTATGTATAGAAGG	TGACCAACACCAAGTTAAAGTATGAG			
CER1 (At1g02200)		AGGCGTTCAGGTCTCCACT	CCACCAGCCATACCTTGTTT			
CCS52A1 (AT4G229	10)	GACCAACTCAAGCTGGCTG	GGAACCAACATTCAACACAACCGG			
CCS52A2 (AT4G1192	20)	CCTGATTTCGAGAATCATGTCAAGAC	CTGTGAACACGCCGCAGCAGTG			
ChIP assay E2F site	e Lengtl	ı				
CCS52A1-pr1 +	135 bp	CCGCTTAACTTCACATGTCGTTTTCTG	CATCTCTTTGTCCTTTTTATTGTAGTTTGG			
CCS52A1-pr3 -	182 bp	ACGCCTGCCATCTAAGATTC	GGTGAGGACCGTGAGGTTTA			
CCS52A1-pr5 -	142 bp	CCACCTACACATCAACAAGCA	TGAAAGAAAAAGAAAAACAAAACC			
CCS52A2-pr1 +	142 bp	TTTCGTTCCTCCAGATTTGA	TTCGCACCAATTCACTTGAC			
CCS52A2-pr2 +	148 bp	CCAGATTTGAAGATTTGGGTTG	TGATCGCTCCCTTATTTTCG			
CCs52A2-pr4 -	146 bp	TGCAAATGCAACTTTTAGAAAATA	TGCACTTTAAATGGTAAAAATCC			
CCS52A2-pr5 -	100 bp	TTGTTATTAGAAATATCATTTTGGT	C TCGTTGACCGTTATTGTTCTATTT			
PCNA1 +	162bp	AATGACCAAAAATATCCATCCA	A CGGCTATTTTGGAAAGTGGA			
IR1(chr3) -	1	CATTGAACACCTATTGGTAGGAA	A ACTGTTTTGGTCCAGATTTTCAG			

IR (intergenic region)

Table SIII. Primer sequences used for Q-RT-PCR and ChIP assay.

Supplementary Figure legends

Supplementary Figure 1. Root meristem sizes of pE2FA::gE2FA-GFP, pRBR1::gRBR1-GFP lines and wild type Columbia. (**A**) Confocal microscopy images of the root tip of *Arabidopsis* plants four days after germination (4dag) expressing either the translational GFP fusion of E2FA (pE2FA::gE2FA-GFP lines - left) or RBR1 (pRBR1::gRBR1-GFP - right) and the enlarged image of the boxed area next to their right side showing details of their localization around the transition from root meristem to elongation zone. (**B**) Confocal microscopy images after propidium iodide staining of the roots as indicated. Arrows indicate the first elongated cortex cell (transition zone), arrowheads mark the quiescent centre. (**C**) Root meristem size (expressed as the number of cortex cells marked in (*B*) by arrow and arrowhead) of wild type, the translational fusion of E2FA (pE2FA::gE2FA-GFP), and RBR1:(pRBR1::gRBR1-GFP) transgenic lines.

Supplementary Figure 2. Efficiency and specificity of the E2FA RNAi silencing. (A) Detection of HA-E2FA or HA-E2FB protein levels in protoplasts transiently expressing the 35S::HA-E2FA or 35S::HA-E2FB alone or in combination with either E2FA-RNAi or E2FB-RNAi constructs two days after transformation as indicated. Anti-HA antibody was used in Western blot, the same membrane was stained afterwards with Coomassie indicating protein loading. (B) Quantitative RT-PCR of *E2FA* transcript in the indicated E2FA RNAi (E2FAi) T2 homozygous lines.

Supplementary Figure 3. E2FAi have smaller cotyledons and root compared to WT. (A) Pictures of *in vitro* grown wild type and E2FAi line 2/1 seedlings were taken 4 days after germination. (B) Root length of wild type and E2FA-RNAi line 2/1 was determined three

days after germination. (C) Root meristems of wild type Columbia (right) and E2FA-RNAi line 2/1 (left) at 5 days post germination. Arrows represent epidermis meristem-elongation transition zone, and asterisks indicate the position of quiescent centre. (D) Comparison of RBR1, CDKB1;1 and CDKA;1 protein levels between wild type and E2FA-RNAi plants one week post germination. Molecular masses are indicated on the left. (E) Flow cytometry measurements of DNA content from cells in leaf pairs representing all the rosette leaves from the first (L1/2) to the sixth pair (L11/12) of control wild type and E2FAi line 2/1 plants grown on soil at 24 dag. (F) Flow cytometry measurements of DNA content from cells in 2/2 (on the left) and ten days old control wild type and E2FAi line 2/2 (on the left) and ten days old control wild type and E2FA knock out line (*e2fa-1*; on the right).

Supplementary Figure 4. Regulation of RBR1 phosphorylation during leaf development. (A) Immunoprecipitation (IP) with anti-phospho-Rb (P-RB/Ser807/811) specifically immunoprecipitates a protein detected with anti-RBR1 antibody on Western blot. P-RB form is most abundant at early stages, 9 dag, during leaf development. (B) RBR1 phosphorylation in CYCD3:1 and E2FA/DPA overexpression lines. Proteins were extracted from two weeks old seedlings of CyCD3;1 overexpressor-OE (Dewitte et al. 2003), E2FA/DPA-OE (De Veylder et al. 2002), and wild type, followed by IP with anti-phospho-Rb antibody and probed the IP for RBR1 and CDKA on Western blots. The inputs (1/10th of what was used for the IP from the extracts) and the P-RB IP are indicated. (C) RBR1 phosphorylation in the KRP2 overexpression line. Proteins were extracted from a week old seedlings of KRP2 overexpression line (De Veylder et al. 2001) or wild type control, immunoprecipitated with anti-phospho-Rb antibody and the IPs were probed with anti-RBR1 or anti-CDKA;1 antibodies on Western blot. (D) RBR1, but not the P-RB form interacts with E2FA-GFP. First leaf pair at eight days after germination of two E2FA-GFP lines (line 2/10 and line 81/11) were used to immunoprecipitate E2FA-GFP with anti-GFP antibody and test the presence of phosphorylated RBR1 (P-RB) and RBR1 in complex with E2FA-GFP. (E) Reciprocal IP as to what was shown in D confirms that the P-RB form does not interact with E2FA. The line with the highest level of E2FA-GFP (81/11) was used to prepare extract from the first leaf pairs ten days after germination, IP was carried out with anti-P-RB antibody. We could detect RBR1 but not E2FA-GFP in the IP using anti-GFP and anti-RBR1 specific antibodies. (F) The P-RB antibody also specifically immunoprecipitates the RBR1-GFP fusion. Immunoprecipitation (IP) with anti-phospho-Rb (P-RB/Ser807/811) specific antibody from the first leaf pair of transgenic line expressing the translational GFP fusion of RBR1 and probed with anti-GFP antibody on Western blot at different time points during leaf development as indicated (dag). Arrow points to the GFP-tagged RBR1 protein. The molecular mass of RBR1-GFP protein is around 150 kD. 1/20th of the IP from the extract was loaded as input.

Supplementary Figure 5. Phosphorylation of RBR1 is regulated by CYCD3;1-KRP2 pathway in a sucrose dependent manner. (**A**) Six days old seedlings grown on plate in the presence of 1% sucrose of wild type *Arabidopsis* Columbia (Col-WT) and Landsberg (Ler-WT) and transgenic CYCD3;1 and KRP2 overexpressor lines (T0) were treated for six hours with liquid media containing no (0%) or 2% sucrose. Total proteins were extracted and blotted with anti-P-RB, anti-RBR1 and anti-CDKA;1 antibodies as indicated. (**B**) Flow cytometry measurements of DNA content from cells in the first leaf pair of wild type *Arabidopsis* Columbia seedlings grown on plate with 1% sucrose for six days after germination treated with liquid medium in the presence or in the absence of sucrose (2% or 0% respectively) for six, twelve and 24 hours (h) as indicated. (**C**) Expression analysis of CYCD3;1, CYCA2;3, CYCB1;1, and CDKB1;1 were carried out by Q-RT-PCR from six days old wild type *Arabidopsis* Columbia seedlings treated with medium supplemented with or without sucrose (2% and 0%, respectively) for the indicated time period.

Supplementary Figure 6. In the CycD3;1 overexpression line there is an increased amount of E2FA-RBR1 complex compared to WT, but there is no detectable E2FB-RBR1. (A) Interaction of E2FA with RBR1 in wild type Arabidopsis Landsberg (Ler) or CycD3;1 overexpression line (D3;1-OE). IP from protein extracts of one week old seedlings with anti-E2FA or anti-DPA antibodies as indicated. The co-IP of RBR1 was probed with anti-RBR1 antibody in Western blots. The intensity of the cross reacting bands were determined by using Image J software and indicated bellow the image (B) Cotyledons enter into endocycle early during development in WT, but this is inhibited by CYCD3;1 overexpression. The percentage of DNA ploidy levels were determined by flow cytometry in samples taken at four time points (3, 6, 8, 10 days after germination - dag) of cotyledon of wild type Arabidopsis ecotype Landsberg (Ler) and CvcD3;1 overexpressor line (CYCD3;1-OE). (C) RBR1, E2FB, DPA and CDKB1;1 protein levels are elevated in the CYCD3;1 overexpression line, indicative of active cell proliferation. Proteins were extracted from the cotyledons of wild type (Ler) and the CycD3;1 overexpression line (CYCD3;1-OE) at three time points (days after germination - dag) and were probed by using specific antibodies against RBR1, E2FB, DPA, and CDKB1:1 in Western blot as indicated. Coomassie-stained proteins on the same membranes are shown as a loading control. (D) E2FA, but not E2FB interacts with RBR1 in the of CYCD3:1 OE plants where cotyledons cells abundantly proliferate. Coimmunoprecipitation assays of cell extract prepared from the cotyledons (cot) of wild type (Ler) and the CycD3;1 overexpressor line (CYCD3;1-OE) at the indicated time point (10 dag). Immunoprecipitations (IP) used anti-E2FA or anti-E2FB or anti-DPA antibodies as indicated. Co-IP of RBR1 was detected by anti-RBR1 antibody on Western blot. RBR1 protein is indicated by arrow. 1/25th of the IP from the extract was loaded as input. (E) Flow cytometry measurement of the developing first leaf pair of wild type control and pRBR::gRBR1-GFP line 7 days after germination (DAG) when most leaf cells are dividing and at 16 DAG when endocycle is dominant over proliferation.

Supplementary Figure 7. E2FA can dimerise both with DPA and DPB proteins. Anti-DPA or anti-DPB antibodies were used for IP from leaf extract derived from E2FA-GFP line (line 5/1) and the Co-IP of E2FA-GFP was probed with anti-GFP antibody. The detected E2FA-GFP is marked by arrow on the right and molecular mass of the protein is indicated on the left.

Supplementary Figure 8. $E2FA^{\Delta RB}$ is a C-terminal deletion mutant that removes both the RB-binding and the overlapping transactivation domain and therefore cannot bind RBR1 and cannot transactivate genes, but still able to efficiently dimerise with DP and to bind to the E2F element on target promoters. (A) Graphical representation of domain organization of E2FA indicating the deletion of 65 amino acids from the C-terminal end which resulted in the $E2FA^{\Delta RB}$ mutant that lack the RB-binding domain, and has a shortened transactivation region. (B) Electrophoretic mobility shift assays (EMSA) show that the *in vitro* translated mutant HA-E2FA^{ΔRB} could bind to oligo DNA with E2F elements in the presence of Myc-DPA protein as indicated with arrow. (C) The binding of the E2FA^{Δ RB}/DPA heterodimer to the E2F specific oligo DNA was further confirmed in the EMSA antibody suppershift assay where antibodies recognising the epitope tag (HA-and MYC) were added to cause supershifts as indicated by lines in bracket. (D) Co-immunoprecipitation with DPA- and DPB-specific antibodies from extracts of HA-E2FA $^{\Delta RB}$ /DPA lines shows that the overexpressed HA-tagged $E2FA^{\Delta RB}$ protein can efficiently dimerise with the co-expressed DPA protein, but not with the endogenous DPB. As a control we have shown that endogenous E2FB can be equally well detected in complex with both DPA and DPB in the IPs. (E) We also tested whether the mutant E2FA could form complex with RBR1 protein. We immunoprecipitated E2FA^{ΔRB} protein through the N-terminal HA-epitope tag and as a positive control we have used HAtagged E2FB protein. We could recover RBR1 protein with the HA-tagged E2FB but there was no detectable amount of RBR1 with the E2FA^{ARB} protein. Asterisk indicates a nonspecific cross-reacting protein with the antibody, while HA-tagged E2FB and E2FA^{ARB} proteins are marked with arrows. (**F**) To test whether the overexpression of mutant E2FA^{ARB} could block the interaction between RBR1 and the endogenous E2FA we have done an IP with anti-E2FA specific antibody from WT and HA-E2FA^{ARB}/DPA lines and tested for the presence of RBR1 in the IP. The E2FA-RBR1 interaction was reduced in the HA-E2FA^{ARB}/DPA line compared to WT. (**G**) The C-terminal part of E2FA contains both the RB binding and transactivation domains. To test the transactivation capacity of the HA-E2FA^{ARB} construct, either the full length E2FA and DPA or the mutant E2FA^{ARB} and DPA were cotransformed into protoplasts and measured their transactivation activities on the RNR2 promoter containing E2F sites and driving the GUS reporter construct (Horvath et al. 2006). There was an increase in the promoter activity of RNR2 in the presence of E2FA and DPA, while there was no increase in the GUS activity with the E2FA^{ARB} construct.

Supplemetary Figure 9. Co-expression of E2FA^{Δ RB} with DPA increases ploidy level through the activation of endocycle. (**A**) Proteins were extracted from seedlings of wild type control, DPA, HA-E2FA^{Δ RB}, HA-E2FA^{Δ RB}/DPA, and E2FA/DPA lines one week after germination, and the level of the HA-E2FA^{Δ RB}, DPA, E2FB, RBR1, CDKB1;1, CDKA;1 were determined on Western blots by specific antibodies as indicated. (**B**) The HA-E2FA^{Δ RB}/DPA seedlings are slightly smaller compared to wild type at five days after germination Bar= 2mm. (**C**) Root meristems of wild type Columbia (right) and HA-E2FA^{Δ RB}/DPA (left) at 5 days post germination. In the lugol stained roots arrowheads indicate the position of quiescent centre, and straight line marks the size of the root meristem (RM). (**D**) Representative images from the adaxial epidermal cell layer of the first leaf pairs at two developmental time points (days after germination-dag) from wild type (WT), and the 35S::HA-E2FA^{Δ RB}/DPA line as indicated. Bar=100 μ M. (**E**) Representative images of the first leaf of wild type control (Columbia) and the 35S::HA-E2FA^{Δ RB}/DPA transgenic line shows significant size difference. Scale bar is 1 cm. (**F**) Trichomes are severely overbranched on the leaf surface of the HA-E2FA^{Δ RB}/DPA plants. (**G**) Percentage of trichomes with number of branches from 3 to 10 in control wild type, HA-E2FA^{Δ RB}, HA-E2FA^{Δ RB}/DPA plants (n=150). (**H**) Flow cytometry measurements of DNA content from cells in the first leaf pair at 15 dag of control wild type, DPA, E2FA^{Δ RB}, and E2FA^{Δ RB}/DPA overexpression lines.

Supplementary Figure 10. Co-expression of E2FA or E2FA^{Δ RB} with DPA^{Δ DB} mutant missing the DNA-binding region do not lead to elevated ploidy level. (**A**) E2FA was detected by anti-E2FA antibody, Myc-DPA^{Δ DB} with anti-myc on Western blot, and the specific cross-reacting bands are labelled by arrows. Asterisks denote the non-specific crossreaction of antibody with proteins on the blot. (**B**) Flow cytometry measurements of DNA content of the first leaf pairs of DPA^{Δ DB}, E2FA/DPA^{Δ DB}, E2FA^{Δ RB}/DPA, and wild type control. (*C*) Flow cytometry analysis of DNA content from cotyledon samples of transgenic seedlings including single and double overexpressor lines as indicated and the wild type control (WT-Col) eight days after germination.

Supplementary Figure 11. Expression of selected set of E2FA-regulated genes in the E2FA^{Δ RB}/DPA line. (A-C) Quantitative RT-PCR analysis of the expression of *CER1, RNR2, MCM3* genes from the developing first leaf pair of E2FA^{Δ RB}/DPA transgenic lines (7 and 8; A to C, respectively).

Supplementary Figure 12. Expression of all 6 E2Fs in the *e2fa-1* knock out mutant compared to wild type. Expression analysis of E2FA, E2FB, E2FC, DEL1, DEL2 and DEL3 genes by using Q-RT-PCR in leaf samples collected at the indicated time points days after germination (DAG) from wild type control and E2FA T-DNA insertion line (*e2fa-1*).

Supplementary Figure 13. Quantifications of the Co-IP experiments presented in Figure 3 and 4. The intensity of the specific protein bands were determined by Image J software.

Magyar_Supplementary Fig1.

pRBR1::gRBR1-GFP

WT-Col

pE2FA::gE2FA-GFP

Magyar_Supplementary Fig2.

Magyar_Supplementary Fig3.

Magyar_Supplementary Fig4.

Magyar_Supplementary Fig5.

Magyar_Supplementary Fig6.

Magyar_Supplementary Fig7.

Magyar_Supplementary Fig8.

Magyar_Supplementary Fig9.

Magyar_Supplementary Fig10.

Magyar_Supplementary Fig11.

Magyar_Supplementary Fig12.

Magyar_Supplementary Figure 13.

