

Figure S1. MS/MS fragmentation of CL species with m/z 1529.9 from irradiated lung.

Two overlapping signals corresponding to molecular species of oxidized CL (CL-C_{18:1}/C_{18:2-OOH}/C_{18:1}/C_{22:6}, and CL-C_{18:2}/C_{20:4-OH}/C_{18:1}) along with several non-oxidized CL were detected in MS/MS spectrum of CL molecular ion with m/z 1529.9. <u>CL-C_{18:1}/C_{18:2}/C_{20:4-OH}/C_{18:2}/C_{22:6}: lons [a₁]⁻ and [b₁]⁻ with *m/z* 729.5 and *m/z* 743.5, respectively corresponding to C_{18:1}/C_{18:2-OOH}-PA and C_{18:1}/C_{22:6}⁻PA were formed during fragmentation of the molecular ion with *m/z* 1529.9. Additionally characteristic daughter ions [a₁+56]⁻ (m/z 785.8), [a₁+136]⁻ (m/z 865.6), and [b₁+136]⁻ (*m/z* 879.8) were detected on MS/MS spectrum as well. <u>CL-C_{18:2}/C_{20:4-OH}/C_{18:1}: [a₃]⁻ and [b₃]⁻ ions with *m/z* 735.4 and *m/z* 737.6 corresponding to C_{18:2}/C_{20:4-OH}-PA and C_{20:4-OH}/C_{18:1}⁻ PA as well as additional ions with m/z 793.8 ([a₃+56]⁻), *m/z* 871.6 ([a₃+136]⁻) and *m/z* 873.5 ([b₃+136]⁻) were formed after fragmentation of molecular ion with m/z 1529.9. In addition, molecular ions of C_{18:1} (*m/z* 281.3), C_{18:2} (*m/z* 279.3), C_{18:2-OOH} (*m/z* 311.3), C_{20:4-OH} (*m/z* 319.3), and C_{22:6} (*m/z* 327.3) were present in MS/MS spectrum. Parts of MS² spectrum of the molecular ion with *m/z* 1529.8 are shown in the ranges of *m/z* 270 – 340 (**a**) in the range of *m/z* 720 – 800 (**b**) and in the range of *m/z* 860 – 890 (**c**).</u></u>

Figure S2. MS/MS fragmentation of CL species with m/z 1497.9 from control lung.

Four overlapping molecular species of CL (CL-C_{18:1}/C_{18:2}/C_{18:2}/C_{18:2}/C_{18:2}/C_{18:2}/C_{18:2}/C_{22:5}, CL-C_{18:2}/C_{20:4}/C_{20:3}/C_{18:2}, and CL-C_{18:2}/C_{20:4}/C_{20:4}/C_{20:3}/C_{18:1}) were detected in MS/MS spectrum of CL molecular ion with *m*/z 1497.9. <u>CL-C_{18:1}/C_{18:2}/C_{22:6}</u>: lons [a₁]⁻ and [b₁]⁻ with *m*/z 697.7 and *m*/z 743.5, respectively corresponding to C_{18:1}/C_{18:2}/C_{22:5}-PA and C_{18:2}/C_{22:6}-PA were formed during fragmentation of the molecular ion with *m*/z 1497.9. Additionally characteristic daughter ions [a₁+56]⁻ (*m*/z 753.7), [a₁+136]⁻ (*m*/z 833.6), [b₁+56]⁻ (*m*/z 799.9), and [b₁+136]⁻ (*m*/z 879.6) were detected on MS/MS spectrum as well. <u>CL-C_{18:2}/C_{22:5}-PA and C_{18:2}/C_{18:2}/C_{18:2}/C_{22:5}. Fragmentation analysis revealed the presence of [a₂]⁻ and [b₂]⁻ ions with *m*/z 695.5 and *m*/z 745.8 mainly corresponding to C_{18:2}/C_{18:2}/C_{18:2}/C_{18:2}/C_{18:2}/C_{22:5}-PA. Daughter ions with *m*/z 751.7 ([a₂+56]⁻); *m*/z 831.5 ([a₂+136]⁻); *m*/z 801.6 ([a₂+56]⁻ and 881.3 ([b₂+136]⁻) were additionally detected on MS/MS spectrum. <u>CL-C_{18:2}/C_{20:4}/C_{20:3}/C_{18:2}-Add CL-C_{18:2}/C_{20:4}/C_{20:4}/C_{18:1}: [a₃]⁻ and [b₃]⁻ ions with *m*/z 719.3 and 721.6 corresponding to C_{18:2}/C_{20:4}-PA and C_{20:3}/C_{18:2}-PA or C_{20:4}/C_{18:1}-PA as well as addition ions with *m*/z 855.5 ([a₃+136]⁻), *m*/z 777.5 ([b₃+56]⁻) and *m*/z 857.5 ([b₃+136]⁻) were formed after fragmentation of molecular ion with *m*/z 1497.9 Molecular ions with *m*/z 415.5 and *m*/z 417.5 were formed during fragmentation of the molecular ion with *m*/z 279.3), C_{22:5} (*m*/z 329.3), C_{20:4} (*m*/z 303.3), C_{20:3} (*m*/z 305.3) and C_{22:6} (*m*/z 327.3) were presented in MS² spectrum as well.Parts of MS/MS spectrum of molecular ion with *m*/z 1497.9 shown in the range of *m*/z 270 – 340 (**a**) in the range of *m*/z 690 – 780 (**b**) and in the range of *m*/z 790-890 (**c**).</u></u>

Figure S3. Identification of oxygenated fatty acids in CL obtained from the lung of mice exposed to TBI. **A** –Typical MS/MS spectrum of oxygenated $C_{18:2}$ with m/z 311 (**a**) after CL hydrolysis by phospholipase A₂. Fragmentation pattern of molecular ion with m/z 311 (**b**). **B** –Typical MS/MS spectrum of oxygenated $C_{18:2}$ with m/z 325 (**a**) after CL hydrolysis by phospholipase A₂. Fragmentation pattern of molecular ion with m/z 325 (**b**).

Figure S4. Identification of oxidized PS molecular species from the lung of mice exposed to TBI.

A – Negative ion ESI-MS/MS spectra of PS species with *m*/z 786.5 from control lung. **B** – MS/MS fragmentation of oxidized PS molecular species with *m*/z 818.5 from the lung of mice exposed to TBI at the dose of 10Gy. **C** – MS/MS fragmentation of oxidized PS molecular species with *m*/z 832.5 from the lung of mice exposed to TBI at the dose of 10Gy. Part of MS/MS spectra in the range of *m*/z 200 – 600 for the respective molecular ions is shown as an inserts. The loss of serine group of PS with m/z 786.5, *m*/z 818.5 and *m*/z 832.5 yielded the fragments with *m*/z 699.5, *m*/z 731.5 and *m*/z 745.6, respectively. Product ions with *m*/z 419.3 originated from fragments with *m*/z 699.5, *m*/z 731.5 and *m*/z 745.6 after loss of C_{18:2} mono-hydroperoxy-C_{18:2} or mono-hydroxy/mono-epoxy-C_{18:2} and mono-hydroperoxy/mono-oxo-C_{18:2}, respectively. Molecular ions with *m*/z 833.3, *m*/z 281.3 and *m*/z 279.3 corresponding to C_{18:0} C_{18:1} and C_{18:2} acids, respectively were also formed during fragmentation of parent ion with *m*/z 311.3 and *m*/z 325 corresponding to mono-hydroperoxy-C_{18:2} or mono-hydroxy/mono-epoxy-C_{18:2} and mono-hydroperoxy/mono-oxo-C_{18:2}, respectively. Daughter ions with *m*/z 327.3 were present in spectrum of molecular ions with *m*/z 832.5 and correspond to non-oxidized PS C_{18:0}/mono-hydroperoxy-C_{18:2} or C_{18:0}/mono-hydroperoxy-C_{18:2} and C_{18:0}/mono-hydroperoxy-C_{18:2} and C_{18:0}/mono-hydroperoxy-C_{18:2} and C_{18:0}/mono-hydroperoxy-C_{18:2} and C_{18:0}/mono-hydroperoxy-C_{18:2} and C_{18:0}/mono-hydroperoxy/mono-epoxy-C_{18:2} and mono-hydroperoxy-C_{18:2} and correspond to non-oxidized PS C_{18:0}/mono-hydroperoxy-C_{18:2} or C_{18:0}/mono-hydroyy/monio-epoxy-C_{18:2} and C_{18:0}/mono-hydroyy/monio-epoxy-C_{18:2}