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Figure S1: Visualization of validation results. Here we display a two-dimensional summary
of the CEU (left panel) and YRI (right) read data for each of the validation sites that we were
able to classify with confidence. On the x-axis, sites are positioned by the cumulative mutant read
frequency in the 3rd generation samples and parents (CEU) or the blood DNA from NA19240 and
cell line DNA from the trio parents (YRI). On the y-axis sites are positioned by the mutant read
frequency in the cell line of the trio offspring. Mutant read frequencies are weighted summaries
of the results from both validation experiments. Sites are colored according to validation status,
see inset legend for details.
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Figure S2: Validation results stratified by de novo calling algorithm. For each method,
Family-aware Probabilistic Illumina Read-based method (FPIR), Family-aware Illumina Genotype
Likelihood-based method (FIGL), and Sample-Independent Multiple Technology Genotype-based
method (SIMTG), the results of the combined validation experiments across all candidate sites are
summarized as Inconclusive, True mutation, or False Mutation, and separated by the prediction
metric reported by each method. The number of candidate sites falling within each category are
shown on the bars. Sites reported in the ’None’ columns were not included in the candidate site
list contributed by the particular method.
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standard error is plotted for each class. See methods in main text for details.
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Figure S4: Comparing germline and somatic de novo mutations. (A) The relative
proportion of mutations from A:T positions and G:C positions for germline and somatic DNMs
merged across trios. Complementary mutations were combined. (B) Clustering of apparent DNMs
due to somatic deletions. The top panel shows a dendrogram created by hierarchical clustering
of all apparent CEU DNMs on chromosome 19 on the basis of their physical separation. By
examining read depth data on the same individuals, we see that physically clustered apparent
DNMs are caused by a somatic or cell-line deletion in one of the two trio parents, as illustrated
here for an event at 41.8-42.0 Mb in NA12892. (C) Mutant read frequency is highly sensitive
to cell line mosaicism. For each trio offspring, the distribution of mutant read frequencies in
the Illumina validation data is plotted for germline (DNM and inherited) heterozygous variants
(black) and somatic DNMs (red).
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Sample Experiment I Experiment II Relationship

Source Source

CEU Family

NA12891 C C Father

NA12892 C C Mother

NA12878 C C Daughter

NA12877 N C Husband

NA12879 C* C Granddaughter

NA12880 C* C Grandaughter

NA12881 C* C Grandaughter

NA12882 C* C Grandson

NA12883 C* C Grandson

NA12884 C* C Grandson

NA12885 C* C Granddaughter

NA12886 C* C Grandson

NA12887 C* C Granddaughter

NA12888 C* C Grandson

NA12893 C* C Grandson

YRI Family

NA19238 C,B* C Mother

NA19239 C,B* C Father

NA19240 C,B C,B Daughter

Table S2: Source of DNA samples used in validation experiments. B = Whole genome
amplified, blood derived DNA, C = cell line DNA, N = not sequenced, B* = PCR products
from WGA, blood derived DNA for NA19238 and NA19239 were pooled prior to sequencing in
experiment I, C* = PCR products from cell line DNA for all 11 CEU grandchildren were pooled
prior to sequencing in experiment I.
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Sample Number % mapped % properly median % sites % sites

Reads (Mill) paired read depth > 0 reads > 19 reads

Experiment I

NA12878 31 89.5 82 2945 89 80.5

NA12891 39 89 80 2760 85 73

NA12892 52 88 75 6394 88 80.5

CEU grandchildren 37.5 89 81.5 3981 91.5 87.5

NA19240 34.5 92.3 80 3121 89.4 86.5

NA19238 38.9 85.4 72 1523 74 65.6

NA19239 39.8 90 76.5 2743 89.4 87.3

NA19240 blood 42.5 86 73 2961 89.7 87.5

YRI parent blood 41 83.5 71 3374 90.4 88.9

Experiment II

NA12878 26 91.9 56.7

NA12891 29 91.7 59.5

NA12892 32 93.9 61.4

CEU grandchildren 21 91.8 51.3

NA19240 14 87.2 42.4

NA19238 16 88.5 45.0

NA19239 17 89.2 46.7

NA19240 blood 17 87.7 46.2

YRI parent blood NA NA NA

Table S3: Validation Experiment Sequencing Summary Statistics. Notes for Experiment
II: values listed for CEU grandchildren are averages across samples. YRI parental blood DNA
was not sequenced in Experiment II.
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Supplementary Note: Introduction

This Supplementary Note contains all of the methods used to generate the results in the main

text, as well as additional results not described in the main text. This document is organized in a

manner that roughly reflects the chronology of the project (Figure 1, main text), with downstream

analyses of the validated de novo mutations at the end.
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1 Discovery of de novo point mutation candidates

Three different algorithms, Sample-Independent Multiple Technology Genotype based method

(SIMTG), Family-aware Illumina Genotype Likelihood-based method (FIGL), and Family-aware

Probabilistic Illumina Read-based method (FPIR), were developed for DNM discovery. The first

approach considers data on each sample independently but jointly considers data from all three

sequencing platforms. The subsequent genotypes of family members are compared to identify

apparent new alleles present in the offspring and the three genotype confidence values summarized

to rank candidate DNMs. The last two are probabilistic approaches that use the Illumina data

and jointly analyse data from all three family members simultaneously, although they differ in

their underlying statistical methodology. These approaches both make use of a population genetic

prior, and model the data for the entire trio jointly. One important difference is in the way each

method models sequencing error. The FPIR model assumes a constant sequencing error rate

across all reads, which is estimated from the data; on the other hand FIGL uses the base error

probabilities attached to each read in the original BAM files and uses these uncertainties when

producing likelihooods. The FPIR process filters reads on MapQ and BaseQ prior to fitting the

model to data, whereas FIGL uses all reads when producing likelihoods.

1.1 SIMTG

The Sample-Independent Multiple Technology Genotype (SIMTG) protocol was applied inde-

pendently to read data from each sample of each trio. At each base of the genome, all reads

overlapping that base were used to calculate the likelihood of each of the ten possible diploid

genotypes:

P [XY ] =
∏
b

P [b ∈ X,Y =


1− 10−Qb/10 b ∈ {X,Y }, X = Y

1− 1
210−Qb/10 + 1

610−Qb/10 b ∈ {X,Y }, X 6= Y
1
310−Qb/10 b /∈ {X,Y }

(where X,Y are alleles, b a base of the base pileup, and Qb its quality score) The genotype

with maximum likelihood became the called genotype, and was assigned a LOD score (the

log-likelihood ratio of the best genotype to the next-best genotype). Those sites identified as

heterozygous in the offspring at a confidence of LOD ≥ 5, and homozygous in the parents at a

confidence of LOD ≥ 5, comprised the SIMTG DNM call set. For samples sequenced on multiple

platforms, two call sets were generated: one using Illumina Genome Analyzer data alone, and

one using combined data from Applied Biosystems SOLiD and Roche Life Sciences 454. Sites

identified by both call sets as heterozygous (with the same alternate allele) were selected for the

SIMTG DNM call set.
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1.2 FIGL

The Family-aware Illumina Genotype Likelihood-based method (FIGL) is an approach to calculate

the probability of a de novo point mutation at a single locus using the joint likelihood of the

read-level data for all three trio members and the observed base in the public reference sequence.

A likelihood is assigned for all 1000 possible unordered, labeled genotype configurations that the

trio may assume. This provides a natural way of accommodating triallelic SNPs. The method is

Bayesian, as the calculations incorporate a prior on the probabilities of observing a new mutation,

an inherited variant, and the observed sampling configuration of derived alleles among parental

chromosomes at a variable site. We will now go into specific details of each step of calculating

P (DNM|D) using FIGL.

Individual genotype likelihoods. The method begins with pre-computed individual genotype

likelihoods. In practice these likelihoods were generated by SAMtools 0.1.7 using the Trio Pilot

BAM files created from Illumina data and released by the 1000 genomes project (final Trio Pilot

release, www.1000genomes.org).

For thoroughness we will briefly outline the SAMtools model that produced these likelihoods,

but we refer the reader to the published description for the complete details (Li et al., 2008). The

data for a locus consist of n reads, k of which contain the base X and n− k of which contain base

Y . A likelihood for each of the 10 possible labeled, unordered genotypes g is calculated as follows:

L(D|G = g) =


an,n−k g = XX(
n
k

)
1
2

k 1
2

n−k
g = XY

an,k g = Y Y

an,n otherwise

The term an,k is meant to represent the probability of making k base calling errors from

n nucleotides. This is a difficult probability to model well, considering that the error process

is dependent on the nucleotides at the site to be called, as well as the local sequence context,

position of the base in the read, etc. Error probabilities may be correlated within and across

reads, and that correlation structure will be locus- and platform-specific. In SAMtools, an,k is

approximated as

an,k = cn,k

j−1∏
i=0

εθ
i

i+1.

Here εi is the ith smallest base error probability and cn,k is a function of εi, details on how to

calculate cn,k are provided in (Li et al., 2008). The parameter θ is an unkown that specifies the

dependency of errors at a site. By default, SAMtools uses a single, empirically determined, value

of θ = 0.85 to model dependency at all sites. A final important point is that SAMtools limits the

base quality at any given position to be less than or equal to the mapping quality of the read

being analysed.
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Trio Model. We receive L(D|G) for each trio member from SAMtools as described above.

However the phenomenon we are trying to detect is a property of the trio as a whole so we

may increase power and specificity by modeling the data as a whole. We add a subscript to the

genotype term to indicate mother, father and child, as GM , GF , GC . Then we write the joint

likelihood for the trio as

L(GM , GF , GC |D) =L(D|GM , GF , GC)L(GC |GM , GF ) (1)

L(GM , GF ). (2)

(3)

We now define the likelihood function for each of the terms on right side of the equation.

L(GM , GF ) is the prior of drawing two genotypes GM and GF from the population, while

observing the base present in the public reference genome sequence, R. Our prior is loosely

derived from the standard neutral coalescent. Empirically we know that two human chromsomes

from European populations differ at roughly 1/1000 sites. There are 4N generations in a tree

of two chromosomes, and 100
12 N generations in a tree relating 5 chromosomes, so we assume

approximately 2/1000 sites will be variable in a sample of 5 human chromosomes. Then the prior

for sampling GM and GF as homozygous reference is 0.998. For the remaining configurations,

conditional on a segregating site, we consider the frequency of the minor allele (will be “1” , 3/5

of the time and “2” 2/5 of the time) and the sampling configuration of the minor allele across

individuals (one homozyous derived individual will be less common than two heterozygotes). To

make the notation compact consider the unordered parental genotype configuration G1, G2. The

major allele at a locus is labeled “A” and the minor allele “D”. We calculate the prior probability

of observing a particular set of alleles at these 5 chromosomes (parents and the reference) as,

L(G1, G2) =



0.998 G1, G2, R = AA,AA,A

0.001 ∗ 3/5 ∗ 4/5 AA,AD,A

0.002 ∗ 3/5 ∗ 1/5 AA,AA,D

0.001 ∗ 2/5 ∗ 1/5 AA,DD,A

0.002 ∗ 2/5 ∗ 2/5 AD,AD,A

0.001 ∗ 2/5 ∗ 2/5 AD,AA,D

This form that we specify for L(GM , GF ) is the same one used by the University of Michigan’s

trio-aware caller to generate SNP genotype calls for Pilot 2 (Trio Pilot) of the 1000 genomes

project, and similar in principle to the one used by the FPIR pipeline described below.

L(GC |GM , GF ) is the “transmission” likelihood; the likelihood that the child’s genotype is

GC given the parent’s genotypes are GF and GM . In our analysis this function is defined for all

possible trio genotype configurations. For configurations compatible with Mendelian inheritance
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the likelihoods are just the standard transmission probabilities (0.25, 0.5, or 1). For sites with

Mendelian incompatabilities (i.e. sites that look like DNMs) we assign a probability of µ (one

mutation) or µ2 (two mutations) as necessary. In our final analysis we defined µ = 2.5× 10−7, as

we multiplied our prior expectation of the mutation rate (2.5× 10−8) by a factor of 10 to account

for the increase in apparent DNMs due to non-germline mutation.

L(D|GM , GF , GC) is the joint data likelihood given a particular trio genotype configuration.

It is calculated simply by multiplying the three single genotype likelihoods together:

L(D|GM , GF , GC) = L(D|GM )L(D|GF )L(D|GC).

Posterior Probabilities. The ultimate output of this DNM caller is a posterior probability

that a site contains a DNM, calculated using the following approach. Let M , D, and C be

10-element vectors containing the likelihoods of all 10 possible genotypes for the mother, father,

and child, respectively. Then a rescaled version of the joint trio likelihood surface is obtained

with the following steps:

1. P = M ⊗D

2. F = P ⊗ C

3. T = F �R

4. X = T � Y

Where ⊗ is the Kronecker product operation, � is the Schur product operation, R is the

matrix of transmission likelihoods corresponding to each trio configuration, and Y is the matrix of

L(GM , GF ) corresponding to the prior on each trio configuration. The maximum likelihood trio

configuration compatible with DNM, xi−max, xj−max, is identified, and the posterior probability

is calculated as:

P (is DNM|D) =
xi−max, xj−max∑

i,j xi,j

1.3 FPIR

The Family-aware Probabilistic Illumina Read-based (FPIR) algorithm is a probabilistic method

to identify candidate de novo mutations starting from read-level data. The approach considers

each genomic site separately and uses the aligned reads for each individual within a trio to

simultaneously infer all three genotypes.
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Model. A probabilistic model was constructed to account for the uncertainty and error in the

process of de novo mutation discovery (Cartwright et al. in prep). The method makes use of

the relatedness between individuals and produces posterior probabilities of pedigrees at each site

rather than posterior probabilities on individual genotypes to facilitate correctly determining

the family members genotypes. While the data for a single site is considered jointly among

the family members, within a single individual the data for each site is treated independently.

This simplifies calculations without sacrificing much accuracy in terms of modeling mutation

patterns. Polymorphic sites are treated as independent from one another since closely linked

double heterozygotes will be rare when the per-site diversity level is low. In fact, the vast majority

of sites are expected to be non-polymorphic, in which case linkage between sites has little to no

effect.

Conceptually the data in our model belongs to one of two categories: 1) the observed data, R,

consists of aligned sequence reads from each individual and 2) the hidden data, H, from which

the observed data is derived, is comprised of the actual parental and offspring genotypes, the

pattern of inheritance, mutation events, how the chromosomes are sampled by the sequencing

reads, and sequencing error.

The probability of the data at a site is PS(R,H|Θ), where Θ contains the parameters of

the model: the population per-site diversity parameter, θ, the per-site, per-generation mutation

rate, µ, and ε, the per-site sequencing error rate. For this application the parameters are

assumed to have fixed per-locus values of θ = 0.001, µ = 2.0 × 10−7, and ε = 0.01 across the

entire genome. Although the germ-line mutation rate has been estimated to be on the order of

2.0× 10−8, we increased this by an order of magnitude to account for the possibility of cell-line

and somatic mutation events in addition to those occuring within the germ-line. For a single

family including two parents and one offspring (hereafter referred to as a trio), these three events

are indistinguishable. The generative model works as follows:

1. Starting from the root of the pedigree, the parental alleles ma, mb, fa, and fb are sampled

from a population at equilibrium allowing up to three segregating alleles. The distribution of

these alleles is calculated in a coalescent framework utilizing θ and allowing for at most two

mutations on the coalescent genealogy. These four alleles are the founders of the pedigree

and form the genotypes of the two parents.

2. From this sample of alleles, one is transferred from each parent to the offspring, with the

possibility of germ-line mutation at rate , to form the child genotype oaob. The allele on

chromosome a in the offspring is arbitrarily labeled as the allele inherited from the mother.

3. Because a trio offers little to no power to distinguish somatic and germ-line mutations, we

assume that the somatic mutation rate is 0.

4. The genotypes are sampled by sequencing with an error rate of ε per base, producing the

observed data R = {RM , RF , RO}. There are NRM reads in total sampling the mother
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at this site, NRF reads from the father, and NRO offspring reads. Each read samples a

chromosome at random.

Probability of the observed data. The probability of the full data at a single site given the

parameters is reduced into several kernel functions:

P (R,H|Θ) = P (m, f |θ)× P (o|m, f, µ)× P (RM |m, ε)× P (RF |f, ε)× P (Ro|o, ε)

The joint probability of the parent genotypes times the probability of the child genotype given the

parents times the probabilities of the nucleotide reads at the site given the individual genotypes.

The hidden data, H, is not directly observed so we calculate the marginal probability of the

observed data, R, given the parameters:

P (R|Θ) =
∑
H

P (R,H|Θ)

This can be evaluated using the tree-peeling algorithm.

Mutation and Error Kernel. The Jukes-Cantor (1969) substitution model is used for the

mutation and error kernels. For the mutation kernel the possible inheritance patterns are summed

over within this kernel. This results in the following

P (o|m, f, µ) =


1
4 + 3

4e
−µ if oa = ma = mb

1
4 + 1

4e
−µ if oa = ma 6= mb or oa = mb 6= ma

1
4 + 3

4e
−µ if oa 6= ma and oa 6= mb


×


1
4 + 3

4e
−µ if ob = fa = fb

1
4 + 1

4e
−µ if ob = fa 6= fb or oa = fb 6= fa

1
4 + 3

4e
−µ if ob 6= fa and oa 6= fb


The error kernel is constructed similarly to the mutation kernel but must consider the entire set

of reads for that individual at that site. For example:

P (ROi|o, ε) =


1
4 + 3

4e
−ε if ROi = oa = ob

1
4 + 1

4e
−ε if ROi = oa 6= ob or ROi = ob 6= oa

1
4 + 3

4e
−ε if ROi 6= oa and ROi 6= ob


and

P (RO|o, ε) =

NRO∏
i=1

P (ROi|o, ε)
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Population Kernel. In the population kernel the probability of a sample of four alleles

constituting the two genotypes of the parents is defined using coalescent theory under the finite

sites model of mutation. The nucleotides ma, mb, fa, and fb constitute a sample of four alleles

from a finite, randomly-mating population, with effective size of Ne. Allowing up to three different

allele states amongst this sample of four, the following allele spectra are possible:

1. 4-0-0: all alleles are the same

2. 3-1-0: two alleles, with the minor allele occuring once

3. 2-2-0: two alleles, with the minor allele occuring twice

4. 2-1-1: three allele states

When calculating the probability of each parental genotype sample, the possible specific

nucleotide used (assuming all are equal in frequency) and the possible order in which they occur

must be considered. For simplicity we will describe P (m, f |θ) based on these spectra and include

corrections for nucleotides and orderings. In order to calculate the probability of allele spectra,

we use coalescent theory. Mutations are allowed to occur continuously along the genealogical

tree connecting these four sampled chromosomes, back to their most recent common ancestor.

In general the distribution of genotype patterns is given by the integration of the probability of

mutations occurring over the length of the genealogical tree and summing the results across all

groupings of mutations that can produce the possible allele spectrum.

Pmf (4− 0− 0|θ) =
1

4
(

6

6 + 11θ
+

121θ2 × 0.163

2(3 + 11θ)(6 + 11θ)
)

Pmf (3− 1− 0|θ) =
1

12× 4
(

48.7θ

36 + 132θ
+

121θ2 × 0.271

2(3 + 11θ)(6 + 11θ)
)

Pmf (2− 2− 0|θ) =
1

12× 3
(

17.3θ

36 + 132θ
+

121θ2 × 0.225

2(3 + 11θ)(6 + 11θ)
)

Pmf (2− 1− 1|θ) =
1

24× 6
(

121θ2 × 0.341

2(3 + 11θ)(6 + 11θ)
)

Detecting de novo mutations. To find candidate sites that have de novo mutations, the above

model is used to estimate the probability that a site contains a mutation in the child. This can

be easily estimated from the probability that the site does not contain a mutation:

P (at least 1 mutation|R,Θ) = 1−
∑
H I(H = ∅)P (R,H|Θ)∑

H P (R,H|Θ)

The indicator function, I(H = ∅), is 1 if a history contains no mutations and 0 otherwise. Due to

the relatively small number of histories that contain no mutations this can be easily calculated,

especially when coupled with the tree-peeling algorithm.
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The probability is used to rank sites by order of those most likely to have a mutation event.

Sites with probability above 10% were considered candidates.

Data pre-processing. Stringent quality filters were applied to the pileup files of each individual.

Filters were customized to the genome being analyzed. For any given site, reads were removed

with mapping quality below a set threshold (MapQ < 63-67 depending on sample), or base quality

below a set threshold (BaseQ < 21 for all samples).

Taken together these values provide a measure of the degree of confidence one can have when

determining a genotype based upon a set of reads. The data structure uses discrete read-level

base observations where one observation carries as much weight as any other. To approximate

this uniformity in the real data, minimum quality filters were applied using levels set by a detailed

investigation of the MapQ and BaseQ value distribution in each individual pileup. In addition to

the quality filters, due to the ability of many reads from repetitive regions to align incorrectly in

tandem, sites with a read depth greater than a maximum threshold defined by specific pileup

investigation were ignored in the analysis (read depth > 54-75 depending on the sample).

1.4 Filtering and merging of calls to create validation lists

After DNM discovery, we attempted to remove artifactual calls by applying a common set of

filters to the FIGL and FPIR callsets. These filters fell into three broad categories: (i) proximity

to other known variants, (ii) overlap with primary genome sequence known to be problematic for

mapping and assembly, and (iii) other properties of the read-level data. In order to assess the

impact of our assumptions about what filters were appropriate, we decided to leave the SIMTG

set of candidates sites unfiltered. We used the following filters:

• Simple Repeats: Union of bases spanned by track of the same name, from UCSC human

genome assembly hg18. This covered 53240703bp.

• segmental duplications: Union of bases spanned by track of the same name, from UCSC

human genome assembly hg18. This covered 142256390bp.

• dbSNP: Union of bases spanned by single nucleotide variants in dbSNP build 129, excluding

single nucleotide variants discovered only in NA12878 and NA19240 by Kidd et al. (2008).

This covered 14944456bp.

• GSVC 42M probe CNV map: Union of bases spanned by CNV calls described in

(Conrad et al., 2010). This covered 157719857bp.

• Read Depth: Sites where at least one trio member has no mapped Illumina reads. This

covered 191658532bp in CEU and 190614209 bp in YRI.

• Broad multiple realignment regions: Sites where heterozygous genotype calls in either

NA12878 or NA19240 are transformed to homozygous genotype calls after multiple sequence
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realignment, as implemented by the Broad Institute GATK. This covered 1278665bp in

CEU and 1835556bp in YRI.

• Pindel short indel calls: Sites within 100bp (+ or -) of a small indel call in NA12878 or

NA19240, made by the program “pindel”, Ye et al. (2009). This covered 11044933bp in

CEU and 17065637bp in YRI.

Taking the union of all filters 468051448bp were filtered in CEU and 473283432bp in YRI.

Our validation philosophy was to identify as many DNMs as possible, thus we used a permissive

threshold for calling, generated a long list of variants for each trio, and attempted to validate

all of these experimentally. In each trio we included all post-filtered sites assigned a posterior

probability greater than 10% by either FPIR or FIGL, as well as the top 500 unfiltered SIMTG

calls not present in the union of the FPIR and FIGL sets. This led to 2750 candidate calls in the

YRI trio and 3236 in the CEU trio.

2 Validation Experiments

We attempted to validate all 2750 candidate DNMs in the YRI trio and all 3236 in the CEU trio

using two parallel approaches based on next-generation sequencing.

Samples. We sequenced genomic DNA from all 6 lymphoblastoid cell lines (LCLs) that were

used to generate the Trio Pilot data (but note, perhaps different lots of cells). In order to separate

germline from somatic (or cell-line) mutations, we screened additional DNA samples with the

same validation assays (Table S2). The CEU trio is part of a larger, 15 member CEPH/UTAH

pedigree (number 1463, which includes the partner of NA12878 and 11 of her children). We

included DNA from the 11 grandchildren to confirm germline status by inheritance. For the YRI

trio (Y117), the Coriell Institute provided genomic DNA for individuals NA19238, NA19239,

NA19240 extracted from the same primary blood samples that were used to generate their LCLs.

Upon receipt at the Sanger, 10ng of blood DNA from each sample was whole-genome amplified

using Genomiphy-HY DNA amplification kit from GE Health, following the manufacturer’s

protocol. After amplification samples were ethanol precipitated and sent for PCR.

2.1 Validation Experiment I

Design. The first experiment comprised nested PCR amplification of putative DNMs followed

by read-pair sequencing of pooled PCR products on the Illumina platform.

Nested PCR primers. Whole genome SNP genotype calls were obtained from the 1000

genomes project for both trios and this information was used in primer design. The internal

amplicon sizes range from 95bp-200bp, with about 20% greater than 100bp. We were able to

design informative assays for 91% sites using this approach.
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The sequencing experiment was to designed to use 54bp pair-end reads. As most internal

amplicons were 100bp, the amplicon was designed to be centered on the site of interest, thus

providing double coverage. In some cases (e.g. where the internal amplicon was > 108bp) the

internal amplicon was designed so that the site of interest was within 20bp of one end of the PCR

product (and not in the primer).

For YRI, external primer pairs could not be designed for 26 sites, and internal pairs couldn’t

be designed for 228 sites. For CEU, external primers could not be designed for 26 sites, and

internal pairs couldn’t be designed for 250 sites. Inspection of the local sequence context indicated

that most of these problem regions were highly repeat-rich. In total we designed 22,520 primers,

and conducted about 111,000 PCRs.

Sample allocation. Illumina GAII was used to generate nine lanes of sequence, distributed as

follows:

CEU - One lane each of pooled PCR product from cell line DNAs NA12878, NA12891,

NA12892. One lane in which the pooled PCR products from all 11 grandchildren are themselves

pooled together. Four lanes were sequenced in total.

YRI - One lane each of pooled PCR product from cell line DNAs NA19238, NA19239, NA19240.

One lane of pooled PCR product from blood DNA of NA12878. One lane in which the PCR

product from blood DNA of NA19238, NA19239 are themselves pooled together. Five lanes were

sequenced in total.

Mapping and Postprocessing. Reads were mapped against the entire reference genome

sequence (NCBI36) using BWA (Li and Durbin, 2009). Some post-processing was done using

GATK (v1.0.2873,McKenna et al. (2010)). Mapping and coverage statistics for Validation

Experiment I are provided in Table S3. The following pipeline was implemented for mapping and

post-processing of reads. Program names are given for each step, followed by arguments.

• BWA aln, BWA sampe

• samtools import, samtools sort, samtools flagstat, samtools index

• GATK -T CountCovariates DBSNP dbsnp 130 b36.rod cov ReadGroupCovariate cov Quali-

tyScoreCovariate cov CycleCovariate cov DinucCovariat

• GATK -T TableRecalibration

• GATK -T RealignerTargetCreator

• GATK -T IndelRealigner
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2.2 Validation Experiment II

Design In the second experiment we resequenced all candidate de novo mutations using Agilent’s

SureSelect Target Enrichment System and ABI SOLID3 Plus sequencing. Agilent’s eArray was

used to design a SureSelect library of 120-bp oligos (baits). Genomic coordinates of putative

DNMs were uploaded into eArray and initially regions defined by RepeatMasker and Tandem

Repeat Masker Finder were omitted from the design process and no overlap of the baits with the

repeats was allowed. However only 2432 baits could be designed in this case. Stringency of the

masks was then gradually relaxed which resulted in baits designed for 5921 (99%) of loci.

Capture experiments were performed independently on each DNA sample. A single Agilent

SureSelect capture design was used targeting all sites on the CEU and YRI validation lists,

meaning that putative DNMs in the CEU trio were sequenced in the YRI samples and vice

versa. SOLiD fragment library construction and sequencing on octet slides was done following the

manufacturers instructions. The SOLiD3 Plus reads from each sample were aligned independently

using ABIs Bioscope v1.2 software with the default settings to NCBI build 36 of the human

reference genome. The resulting alignments were stored in 19 separate BAM files, which were

sorted and indexed using samtools v0.1.7a. The GATK library was used to normalize base

qualities within the BAM files by testing for and removing effects of di-nucleotide and cycle

co-variation (plots not shown).

Sample allocation CEU- DNA from NA12878, NA12891, NA12892, cell lines from all 11

grandchildren (NA12879, NA12880, NA12881, NA12882, NA12883, NA12884, NA12885, NA12886,

NA12887, NA12888, NA12893), and NA12877 were sequenced.

YRI- DNA from NA19238, NA19239, NA12940, and blood DNA from NA19240 were sequenced.

The 3,236 putative DNM sites in the CEU trio had a mean coverage of 50.2x per sample

across all samples; 2,422 sites had at least 5x coverage for each of NA12891, NA12892, NA12878,

and at least one grandchild. The 2,750 YRI candidate DNM sites had a mean coverage of 38.2x

per sample; 1,650 sites had at least 5x coverage for each of NA19238, NA19239, NA19240, and

the blood sample from NA19240. Additional summaries of coverage and depth are in Table S3.

2.3 Validation Analyses

The goal of the validation experiments was to classify each putative de novo into one of 4 categories:

germline de novo, non-germline de novo, variant inherited from the parents, or a false positive

call (ie. no evidence of variation in any sample). We thought of this goal as a model selection

problem and created a modeling framework that would allow us to evaluate the joint likelihood

of the data from both validation experiments (denoted D1 and D2) under each model.

For the CEU trio, we model separately the data from each parent’s cell line, the cell line of

NA12878, and the pooled data from the 3rd generation. Recall that in validation Experiment 1,

these 3rd generation DNAs are pooled into a single lane of sequencing, while in Experiment 2
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each sample was sequenced independently. For the YRI trio, the modeling is analogous, except

the blood DNAs of NA19238 and NA19239 were pooled prior to sequencing in Experiment 1 and

were not sequenced in Experiment 2. We will present the modeling approach using the CEU

family as an example.

Let m1
m,m

1
r be the number of reads from the mother with the mutant allele and reference

allele, respectively, in Experiment 1 (indicated by superscript), and m1
T = m1

m +m1
r . Use the

same convention for g, c, d, the data for the 3rd generation, the trio child, and the father, and use

a superscript ’2’, as in m2
m, to indicate data coming from the second experiment. We assume

that in the case of a heterozygous locus, the number of mutant reads from each lane should be

binomially distributed with an appropriate parameter defined by the experimental design, f1o in

the case of the pooled offspring in Experiment 1, f1s for all other samples in Experiment 1. We

allow for different parameter values in Experiment 2, f2o and f2s , to accommodate effects such as

differences in reference bias during mapping.

In the case of a sample that is homozygous reference at the mutant position, the number of

reads with the mutant allele should be Poisson distributed with some rate equal to the error

rate. This error rate is predefined and considered fixed for Experiment 2, denoted e2, but for

Experiment 1, which often produced > 1000X coverage at the mutant site, we attempt to estimate

locus-specifice error rates from the data. The four models (germline DNM, non-germline DNM,

inherited, false positive) differ from one another in the configurations of binomial and Poisson

likelihoods, but they also differ in the way the Poisson rate is estimated from the data, as described

below, giving e1I , e
1
II , e

1
III , e

1
IV . Putting this all together, the likelihood for the first model is

written:

Model I True Germline de novo.

L(MI |D1) = Bin(g1m; g1T , f
1
o ) ∗ Pois(m1

m,m
1
T ∗ e1I) (4)

∗ Pois(d1m, d
1
T ∗ e1I) ∗ Bin(c1m; c1T , f

1
s ) (5)

(6)

and

L(MI |D2) = Bin(g2m; g2T , f
2
o ) ∗ Pois(m2

m,m
2
T ∗ e2) (7)

∗ Pois(d2m, d
2
T ∗ e2) ∗ Bin(c2m; c2T , f

2
s ) (8)

(9)

and then
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L(MI |D1, D2) = L(MI |D1)L(MI |D2)

The likelihoods for the other models follow naturally.

Parameter values and parameter estimation. There are two sets of parameters that are

needed to specify each model, (1) the expected mutant read frequencies for lanes containing

germline variants, and (2) the sequencing error rate.

The expected mutant read frequency for sites of germline variants in the pooled grandchildren,

fo, differs from what is expected for germline variants present in a single unpooled sample, fs.

For Experiment 1 we define these as f1o = 0.25 and f1s = 0.5. For Experiment 2 we use f1o = 0.175

and f1s = 0.35, which accounts for the reference bias observed while doing alignments in color

space.

For the error rate parameters we use a fixed value for Experiment 2, e2 = 0.005/3. For

Experiment 1 we use a model-dependent estimation process. This algorithm works as follows:

• Set the default error rate, e1d = 0.003.

• Model I, germline de novo. Set e1I to the minimum mutant read frequency from the mother

and the father. If both parents are missing data, e1I = e1d. If e1I > 0.1 or e1I < e1d, set e1I = e1d.

The rationale here is that we don’t believe we can accurately measure an error rate below

the default rate with the data from one sample. If the observed mutant frequency is too

high then the site is probably polymorphic (or some other artifact is present).

• Model II, non-germline de novo. Set e1II to the mutant read frequency in the combined set

of data from the mother, the father, and the grandchildren. If the total number of reads in

these samples is < 100, or if e1II > 0.1 or if e1II = 0, set e1II = e1d.

• Model IIIa, variant inherited from the mother. Similar to Model I. Set e1III to the minimum

mutant read frequency from the father. If the father missing data set to default. If e1III > 0.1

or e1III < e1d, set e1III = e1d.

• Model IIIb, variant inherited from the father. Analogous to Model IIIb.

• Model IV, False positive. Under this model, all samples should be homozygous for the

reference allele and all mutant reads are artifacts of base calling or alignment. Estimate

e1IV as the proportion of mutant reads in the combined set of all reads from all lanes.

Model selection. Classification of sites is done by maximum likelihood. We require that 2

times the difference in log likelihood between the best-fitting model and the next best fitting model

to be greater than 15 in order to classify the site; otherwise we consider the data uninformative

and assign the site a “no call”.

21



Additional filters. Prior to generating base counts for each site, we used the following filters

on the read level data from Experiment 1:

• remove all reads less than 50 bp long, after removing soft clipped sequence

• remove reads with base quality less than 15 at the mutant position

• remove reads with 4 or more mismatches to the reference

We also implemented a simple filter on the validation assignments themselves, based on the

observed read depth across all samples and experiments:

CEU: if the total coverage of NA12878, NA12891, or NA12892 is less than 100 reads in

Experiment 1 AND less than 10 reads in Experiment 2, we do not call this site. If the total

coverage across all grandchildren is less than 100 reads in Experiment 1 AND less than 100 reads

in Experiment 2, we do not call this site.

YRI: if the total coverage of NA19238, NA19239, or the blood DNA from NA19240 is less

than 100 reads in Experiment 1 AND less than 10 reads in Experiment 2, we do not call this site.

Finally, there were a small number of loci with data properties that were not well captured

with our model-based validation process, but identified as problematic and removed by hand.

Validation Results. The goal of the validation experiments was to classify each putative de

novo into one of 4 categories: germline de novo, non-germline de novo, variant inherited from the

parents, or a false positive call (ie. no evidence of variation in any sample). Sites that could not

be unambiguously classified were allocated to a fifth category, “no call”. The counts for each

category in the CEU trio were: germline de novo, 49; somatic de novo, 952; inherited, 129; false

positive, 1304; no call, 802. The counts for each category in the YRI trio were: germline de novo,

35; somatic de novo, 634; inherited, 335; false positive, 1065; no call, 681. These counts have also

been stratified by analysis algorithm and plotted in Figure S2. A visualization of the mutant

read frequencies from the combined validation experiments is presented in Figure S1.

3 Estimation of mutation rate

The sex-averaged mutation rate for each trio was estimated by correcting for the false negative

rate in DNM discovery by the combination of the three DNM discovery algorithms, correcting for

the false negative rate in DNM validation (the proportion of putative DNMs that were classified as

being inconclusive after validation) and dividing by the number of bases that passed the genome

filters and thus had been scrutinized for DNMs. Uncertainty is estimated from the Poisson

confidence intervals on the number of DNMs observed. The sex-specific rates were estimated

by scaling the sex-averaged rates by the proportion of haplotyped DNMs that were ascribed to

paternal and maternal gemlines, with uncertainty estimated from the Poisson confidence intervals

on the numbers of haplotyped DNMs ascribed to either parental germline. We go into specific

details of all calculations in the following sections.
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3.1 Power analysis

We estimated the experiment-wide false negative rate during the discovery phase in two ways;

first, by simulation, and second, empirically, by comparing sensitivity of the different discovery

algorithms to the set of validated germline DNMs. Due to the fact that properties of the read data

vary systematically among samples, and that some groups used sample-specific information (i.e.

the multiple platform data available for the trio offspring but not the parents), we did not consider

the read data to be exchangable among individuals. Our simulation strategy involved using the

HapMap 3 SNP data for these samples to identify all ∼ 30, 000 chromosome 1 heterozygous sites

in the trio child and measuring each discovery algorithm’s sensitivity at these sites using the

1000 genomes trio pilot data. As true DNMs are extremely rare, our reasoning was that the

major source of false negatives in the real analysis would be due to miscalling a child with a

DNM as a homozygote reference, and not miscalling a parent as heterozygote at a DNM position.

In the simulation, sites at which a trio configuration with a heterozygous child was assigned a

posterior probability > 0.10 (FIGL and FPIR) or a quality score equivalent to the threshold

used in discovery (SIMTG) were treated as de novo calls. The virtue of having all three groups

estimate false negative rates on a common dataset is that it models covariance in calling between

algorithms. Based on these results we estimate the experiment-wide (across all algorithms) false

negative rate of 7% in the YRI trio and 4% in the CEU trio.

We also assessed our false negative rate empirically, by post-hoc analysis of the validation

results. Briefly, by comparison to the union of validated germline DNMs called by all three

methods, we can obtain caller-specific false negative rates. Based on these results, we can estimate

false negative rates considering complete dependence (3% YRI, 4.44% CEU) or independence

(0.3% YRI, 0.12% CEU) among calling algorithms.

Finally, we examined the impact of whole genome amplification as a potential source of false

negatives in the YRI validation. If allele dropout occurs at a significant rate during WGA, it is

possible that the mutant allele will sometimes be lost specifically in the blood of NA19240, leading

us to artifactually classify the site as a cell-line mutation. To empirically gauge the importance of

this behavior, we studied 335 sites which could be unambiguously classified as inherited variants

on the basis of cell line DNA alone. In the Illumina validation data only 1 site showed strong

support of allelic dropout in the blood of NA19240, chr19:14131791. At this locus there are

4079 and 4442 reads with the reference and mutant alleles from the cell line of NA19240, while

there are 3846 and 0 reads from the WGA’d blood of NA19240. Looking at these same 335 sites

in the SOLiD data, there was no detectable evidence of allelic dropout (but note, not all sites

are informative). Together these numbers suggest a lower limit of 1/335 = 0.3% for the rate of

misclassifying germline DNMs as non-germline DNMs as a result of allele dropout during WGA

of NA19240 blood.

Conservatively assuming complete dependence in the sensitivity of callers, both the empircal

and simulation approaches to estimating power suggest that we have missed 5% of the true DNMs

in the portion of the CEU genome analyzed by all three groups, and 3.2% in the analogous section
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of the YRI genome.

3.2 Rate Estimate

The overall mutation rate provided in the main text is based on only for the portion of the genome

analyzed by all 3 centers (i.e. not filtered by the FPIR/FIGL-specific filters). The total number

of bases interrogated was 2,555 Mb in CEU and 2,549 Mb in YRI. Based on our validation results

the number of DNMs in the “unfiltered” CEU genome is estimated to be

45 observed validated DNMs ∗[2802 sites of attempted validation /2197 called sites]∗1/(1−0.04)

and for YRI

35 observed validated DNMs ∗[2332 sites of attempted validation /1782 called sites]∗1/(1−0.07)

dividing by the total number of base pairs interrogated gives the following point estimates of

the rate:

CEU = 1.17× 10−8

YRI = 0.97× 10−8

These values are derived using the simulation-based estimation of experiment-wide power,

which we believe to be the most accurate way of estimating the false negative rate (FNR). Given

that there is some uncertainty in the actual FNR of the project, we have analyzed the relationship

between the actual FNR and the inferred germline mutation rate. If the actual FNR has been

underestimated by a factor of 10 (that is, the actual rate is in the range of 40%− 60%), which

seems very unlikely, our estimates of the mutation rate will be only 2-3 times lower than the true

rate.

3.3 Performance of New Sequencing Technologies.

To assess the sensitivity and specificity of newer technologies, we examined call sets for NA12878

and NA19240 generated from newer technology at sites identified as germline, somatic, or false-

positive from validation. We found that with as little as 0.0%− 7.8% loss in sensitivity, newer

technologies are 71.5%− 93.5% more specific at these sites. Specifically, we applied the SIMTG

protocol to whole-genome Illumina HiSeq sequencing of NA12878 (McKenna et al., 2010). Of the

1,304 sites identified as false-positive heterozygote calls from the 1000 Genomes Trio Pilot DNM

validation, 1,104 were identified as homozygous reference when using the HiSeq data, significantly
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reducing the false-positive rate on these sites (by 93.5%). In addition, we considered Complete

Genomics (Drmanac et al., 2010) calls for both offspring (NA12878 and NA19240), and found

that the false-positive reduction rates were also quite high: 80.5% and 71.5% respectively. This

suggests that future DNM analyses using new data may be significantly more specific due to

improvement in sequencing technologies.

During the writing of this report we examined call sets for NA12878 and NA19240 made with

two of the newest sequencing platforms (CG and HiSeq references). We found that the newer

technologies reduce the number of false positive calls in our validation list by 71.5%-93.5% with as

little as 0%-7.8% loss in sensitivity for true DNMs. Fourty-nine validated germline mutations were

identified in CEU in the present study, 47/49 were id’d by CG and 49/49 by HiSeq, while 886/952

somatic DNMs were called by CG and 929/952 by HiSeq, and only 255/1304 false positives were

called by CG and 85/1304 by HiSeq. In the YRI trio, 35/38 validated germline DNMs were called

by CG, 501/634 somatic DNMs, and 301/1055 false positives.

4 Properties of de novo mutation

4.1 Parent-of-origin

We attempted to identify the parental origin for each of the germline de novos, using three

different approaches. Full results are available in Table S1, which is a stand-alone file.

Haplotyping by direct observation of phase in Trio Pilot data. For both CEU and

YRI, we identified all haplotype informative sites within 5kb of the de novo. These are sites in

which the child is heterozygous, and either, (i) only one of the parents is heterozygous, or (ii)

each parent is homozyogous for a different allele. We then mined the 1000 genomes data from

NA12878 and NA19240 to identify individual reads (454) or pairs of reads (SOLiD and Illumina

GA) that span both the haplotype informative site and the de novo site, thus allowing direct

observation of the haplotype phase from a single molecule.

Segregation analysis of CEU de novos. The CEU trio is part of a larger, three-generation

CEPH pedigree. NA12878 bore 11 offspring, from all of which cell lines are available. We

generated SNP genotype calls from the cell line DNAs all 11 offspring using the Affymetrix 6.0

oligo array. We merged these genotype calls with the genotypes produced by the International

HapMap project on NA12878, NA12891, and NA12892, and jointly phased all 14 samples using a

pedigree-aware algorithm implemented in BEAGLE 3.0.3 (Browning and Browning, 2009).

For each validated germline DNM, we defined the paternally and maternally inherited hap-

lotypes in NA12878, using a 200 SNP window centered on the de novo position. We then

classified each grandchild as having inherited the paternal or maternal haplotype from NA12878,

by selecting the NA12878 haplotype with the most similarity to a haplotype in that grandchild.

We then counted the number of reads of the mutant allele observed in paternal and maternal
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haplotype carriers. Sites with at least 0.5% mutant read frequency one of the two haplotype

backgrounds were assigned a parent of origin, which was simply determined by selecting the

parent whose haplotype showed the greatest mutant read frequency.

Molecular haplotyping of YRI de novos We pursued a second experimental haplotyping

strategy similar in spirit to our use of the Trio Pilot data, but more directed to the task. We

use the same set of haplotype-informative of sites, this time designing long-range PCR assays

that included both the de novo and the nearest informative site. Successfully amplified bands

were inserted into plasmids, the plasmids were used to transform bacteria, and we attempted to

sequence 6 independent plasmids from both T7 and SP6 for each transformation.

4.2 Functional Impact

It might be expected that somatic mutations would be under less selective constraint than

germline variation. We used Genomic Evolutionary Rate Profiling (GERP) to quantify the extent

of selective constraint at the site of each DNM (Cooper et al., 2005). GERP scores measure

conservation as the difference between expected and observed rates of nucleotide substitution at

a given human base. GERP scores are position-specific and estimated from aligned orthologous

sequences, in this case from genomic alignments of 16 amniote species in Ensembl 58 (Com-

para.16 amniota vertebrates Pecan). GERP scores were extracted for genotypes found in the

1000 genomes trio pilot, as well as sites from the combined candidate de novo mutation lists from

the CEU and YRI families (Table S1). The positions of these sites were converted from the hg18

coordinate system to hg19 using the LiftOver web tool available at the UCSC Genome Browser

website (http://genome.ucsc.edu/cgi-bin/hgLiftOver).

Using GERP to infer whether DNMs were occurring at selectively constrained sites, we found

that somatic DNMs and germline DNMs arose at similiarly constrained sites in the CEU and YRI

families (t-test p-values 0.8 and 0.4 respectively). Across both families we only observed a single

coding germline DNM, a synonymous variant. The somatic DNMs appear at more conserved

sites relative to inherited variants within each family (t-test, CEU p= 0.003 and YRI p= 0.02,

Figure S3). We observed that 16/17 somatic DNMs in proteincoding sequences were missense

mutations (Table 1, main text). This proportion of missense to synonymous somatic DNMs is

significantly higher than similar ratios for segregating sites in these populations (1000 Genomes

Project Consortium (2010), Fisher’s exact test, p < 0.0004), which might reflect a relative lack of

selective constraint, or adaptive selection in cell culture for somatic DNMs. We did not observe

evidence that somatic DNMs were enriched as a result of somatic hypermutation, nor did we

observe individual somatic DNMs that represent plausible candidates for mutations conferring a

selective advantage for growth in cell culture.
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4.3 Mutation context and content

As a first pass at dissecting the mutation process operating in different cell lineages, we examined

the ratio of transition to transversion mutants in different subsets of the data. We examined

the ratio in somatic vs. germline DNMs (0.9 vs. 2.5 in CEU and 1.1 vs. 3.4 YRI), DNMs of

maternal vs. paternal germline origin (2.6 vs. 3.0), and germline DNMs in the YRI and CEU.

We noted that germline DNMs have a significantly higher transition:transversion ratio than

somatic DNMs (Fisher’s exact test , p < 3 × 10−5), but that these ratios are not significantly

different (p > 0.05) between families for either germline or somatic DNMs, and thus likely reflect

fundamental differences between germline and somatic mutational mechanisms (Figure S4a). Both

germline and somatic DNMs exhibited a significant mutational bias towards A/T composition

(binomial test p= 0.01 and 0.006 respectively), although this mutation bias was significantly

stronger at germline DNMs than at somatic DNMs (Fisher’s exact test, p= 0.04) and was similar

to previously reported germline mutation bias in humans (Lynch, 2010). We observed a higher

fraction of CpG mutations in germline DNMs than somatic DNMs, but, with small numbers

involved, this comparison was not statistically significant.

Analysis of context-specific mutation. In order to obtain a more detailed description of

the validated mutations, we created a 4-letter labelling system that describes (A) the ancestral

base at the mutated site, (B) the first base 5’ to the mutation, (C) the first base 3’ to the mutation,

and (D) the mutant base. As a point of comparison, we created a relative rate matrix describing

common polymorphism in the human intergenic region (IGR), using all SNPs reported in CEU by

1000 genomes project. Positions where the chimpanzee reference genome differs from the human

reference genome were excluded, to increase the probability that the human reference allele is the

ancestral allele. The matrix is calculated in the following way. For the ith premutation triplet, xi,

we count the number of occurrences of that triplet in the IGR of the reference genome. For each

such triplet there are 3 possible non-reference alleles that can be observed. We count the number

of times a particular triplet/variant combination occurs in the 1000 genomes project data, nij ,

and then compute entry zij of the matrix as
nij

xi
.

The matrix derived from CEU chromosome 1 (IGR1) has an extremely high correlation

(> 0.99) with the matrix derived from CEU chromosome 2 (IGR2), and also a high correlation

with the matrix derived from YRI chromosome 1. The slope is always very close to 1, indicating

that the table of mutation frequencies is only slightly variable regardless of which chromosome or

population is examined.

To test the hypothesis that validated somatic mutations from NA12878 and NA19240 originate

from the same mutation processes as common germline variants, we used the following method.

Our test statistic is the correlation coefficient between the 192 elements in the mutation matrix

calculated from the germline IGR polymorphisms and the matrix calculated from the n somatic

DNMs in either NA12878 or NA19240. We generated a null distribution for this statistic by

simulating n mutations from IGR2, calculating a new rate matrix, and then computing the sample
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correlation coefficient with IGR1. We repeat this process 1000 times, and calculate the p-value as

the proportion of simulated correlation coefficient smaller than the observed. By this analysis,

the correlation of the germline polymorphism IGR with the somatic variants in NA12878 (0.90)

and NA19240 (0.88) are extremely significant (p=0)

4.4 Properties of cell cultures

Comparison of the proportion of sequence reads supporting the mutant allele for somatic DNMs

and germline variants revealed that the degree of clonality of the cell-lines derived from the two

trio offspring is quite different; while the CEU cell-line seems fully clonal the YRI cell-line is only

70% clonal (Figure S4b). An additional source of apparent DNMs that result from somatic or

cellline mutational processes events are clusters of variants present in the offspring but not either

parent as a result of a deletion in one of the parental cell-lines (Figure S4c).

Identification of somatic deletions. It has been known for some time that clustered DNMs

can be used to reliably identify both germline ((Conrad et al., 2006), (McCarroll et al., 2006) and

somatic deletions ((Redon et al., 2006)). To quantify the number of somatic deletions in each trio,

genotypes were assessed on each individual independently (e.g. with no knowledge of familial

structure). We then looked for loci at which the offspring may have inherited an allele that was

subsequently deleted in the parental cell lines. This was done by 1) Calculating the intervals of

homozygosity in each parent, 2) identifying all sites at which Mendelian inheritance had been

violated, and 3) Identifying regions of parental homozygosity with an elevated rate of Mendelian

violations. A region of homozygosity in either parent in which at least four Mendelian violations

were present, of which at least one was a de novo event, was considered a candidate somatic

deletion. Of 15 candidate deletions in YRI, and 26 candidate deletions in CEU, two parental

somatic deletions could be visually confirmed based on sequence coverage, both in the CEU trio

(chr19:41,814,852-41,881,619 and chr15:81,093,996-81,225,674, both in the father). In each of the

identified regions, more than 67% of de novo events were at dbSNP sites, suggesting that these

are indeed somatic deletions.

The problem of cell line deletions is more pressing for the CEU trio than the YRI trio. We

are only worried about deletions in the parental cell lines, and we have blood DNA from the

YRI parents, therefore we should be able to exclude these artifacts in YRI. There is no way

to definitively exclude small somatic deletion in the CEU parents at the moment (large events

should be detected by our CGH experiments).

However, we believe we have cleaned the majority of CNV-based artifacts from the pilot 2

data by doing the following:

• filtering de novo calls falling within the high-resolution CNV map made by 42 million probe

CGH array; this map includes CNVs calls from all trio members ((Conrad et al., 2010)).

• filtering de novos that fall in dbSNP sites
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• manually censoring a small number of the remaining sites that are validated as germline

and apparently clustered:

in CEU those are- 1:245658580, chr1:245658581, chr12:41132850, chr12:41132851.

and in YRI: chr1:37316638, chr1:37316639, chr10:87090349, chr10:87090351, chr17:4510332,

chr17:4510336, chr6:5358109, chr6:5358111, chr8:67177220, chr8:67177222.

4.5 Transcription-coupled repair in cell lines

We assessed the impact of transcription-coupled repair (Bohr et al., 1985; Pleasance et al., 2010)

in the two cell lines using the following procedure. We obtained array-based expression data for

about 17000 genes previously generated on the unrelated Phase I HapMap samples and calculated

the median expression level for each gene, separately within the YRI and CEU populations.

These two sets of medians were highly correlated. We next annotated the number of somatic

mutations falling within each gene. We fit a linear model to the number somatic mutations falling

within each gene, using population-specific expression level and gene size as covariates. Both

covariates were significant in each model (CEU: expression p < 0.002, gene size p < 1× 10−15;

YRI: expression p < 0.002, gene size p < 1× 10−15). There was no significant strand bias.
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