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Orthogonal Collocation on Finite Elements

Consider a simple metabolic network consisting of three reactions involving
four metabolites A, B, C and E:

C
v1

−→ A+B

2E
v2

−→ B + C

O
v3

−→ E,

where O denotes the environment.
For this reaction network the stoichiometric matrix is given by:

S =









1 0 0
1 1 0
−1 1 0
0 −2 1









,

where rows correspond to metabolites and columns to reactions, respectively.
Thus, the differential equations of the network are given by:

dA

dt
= v1,

dB

dt
= v1 + v2,

dC

dt
= −v1 + v2,

dE

dt
= −2v2 + v3,

which represent changes in metabolite levels in terms of the reaction rates
vm, 1 ≤ m ≤ 3.

A general optimization problem including a dynamic model described by
differential equations can be posed as:

Objective : max f(t) t ∈ [t0, tf ]

s.t.
du
dt

= F [u(t), z(t), t]

u(t0) = u0 (1)

u(t)L ≤ u(t) ≤ u(t)U

z(t)L ≤ z(t) ≤ z(t)U ,

where f(t) is an objective function, u(t) denotes the state profile vector, and
z(t) is a control profile vector, while u0 give the initial conditions for the
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state profile vector. The bounds of the state profile vector are u(t)L, u(t)U

and the bounds of the control profile vector are z(t)L, z(t)U .
A linear optimization problem that includes the differential equations for

the four metabolites A, B, C and E is then given by:

Objective : max f(t) t ∈ [t0 = 0, tf = 3]

s.t.
dA
dt

= v1

dB
dt

= v1 + v2

dC
dt

= −v1 + v2

dE
dt

= −2v2 + v3

A(t0) = A0 = 2

B(t0) = B0 = 2 (2)

C(t0) = C0 = 2

E(t0) = E0 = 2

0 = A(t)L ≤ A(t) ≤ A(t)U = 100

0 = B(t)L ≤ B(t) ≤ B(t)U = 100

0 = C(t)L ≤ C(t) ≤ C(t)U = 100

0 = E(t)L ≤ E(t) ≤ E(t)U = 100

0 = vm(t)L ≤ vm(t) ≤ vm(t)U = 100 m = 1, . . . , 3,

where vm are the flux rates of the reactions. In case of the simple metabolic
network, vm(t) are the components of the control profile vectors and A(t),
B(t), C(t) and E(t) are the components of the state profile vectors. Moreover,
as an objective function, the maximization the sum over the concentration
of metabolite E at different time points (f(t) =

∑

E(t)) can be used.

Collocation method

An optimization problem including differential equations cannot be solved
directly. Before solving the problem a solution for the differential equations
needs to be determined. Therefore, the differential equations can be solved
by different approximation techniques. In our case, we use the orthogonal
collocation method to approximate the exact solution for the system of ordi-
nary differential equations (ODEs) (Villadsen and Stewart, 1995). Suppose
we have a differential equation, with a differential operator D acting on a
function u:

D(u(t)) =
du

dt
, t ∈ [t0, tf ], (3)
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with u(t0) = u0. Hence, the differential equation of metabolite A can be
described by:

D(A(t)) =
dA

dt
, t ∈ [t0, tf ], (4)

with A(t0) = A0, where A0 represents the initial concentration of metabolite
A at time point t0. In general we are interested in the function u, which we
want to approximate by ũ, where ũ is a combination of polynomials:

u(t) ∼= ũ(t) =
K

∑

j=0

aj · φj(t). (5)

As polynomials, one most commonly uses the family of Lagrange polynomials
whereby

φj(t) =
∏

0≤k≤K
k 6=j

t− tk

tj − tk
. (6)

In the majority of cases, the polynomial given in Eq. (5) can only be used for
the state profile vectors due to missing initial conditions for the control profile
vectors z(t). Thus, the approximation by polynomials for z(t) is defined as
follows:

z(t) ∼= z̃(t) =
K

∑

j=1

bj · ψj(t); ψj(t) =
∏

1≤k≤K
k 6=j

t− tk

tj − tk
. (7)

The result of the differentiation of ũ(t) is not, in general du
dt

. This yields to a
residual equation (Villadsen and Michelsen, 1978):

R(t) =
dũ(t)

dt
−
du(t)

dt
. (8)

For our example the residual equation of metabolite A is given by:

RA(t) =
dÃ(t)

dt
−
dA(t)

dt
, (9)

where Ã(t) is the description of the unknown exact solution for A(t) by the
assumed polynomials. The aim of collocation methods is to force the results
of R(t) to zero. Then, the discretization of the residual equation based on
the method of collocation is performed as follows:

∫ tf

t0

R(t)δ(t− ti)dt = 0, i = 1, . . . , K, (10)
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where δ represents the Dirac delta function (Dirac, 1958) and t0 and tf the
bounds of the interval (time period). The Dirac delta function has the prop-
erty that it is zero everywhere except at the origin, where it is infinite:

δ(x) =

{

+∞, if x = 0

0, if x 6= 0.
(11)

A schematic representation of the function is given in Figure 1. The Dirac

Figure 1: Schematic representation of the Dirac delta function.

delta function is not a true function, formally it can be defined as a distribu-
tion. At x0 = 0 the distribution is infinity, consequently the result is a finite
integral:

∞
∫

−∞

δ(x)dx = 1. (12)

For an integrable function f(x) we have that

∞
∫

−∞

f(x)δ(x)dx = f(0), (13)

which states that the integral of any function multiplied by the Dirac delta
function is just the value of the function at zero. If the Dirac Delta function
is shifted to x = x0 by definition of δ(x − x0) the result is just the value of
the function f at x0:

∞
∫

−∞

f(x)δ(x− x0)dx = f(x0). (14)

Accordingly, the integral over the residual function R(t) can be written as:

R(ti) =
dũ(ti)

dt
−
du(ti)

dt
=

K
∑

j=0

aj ·
dφj(ti)

dt
−
du(ti)

dt
, i = 1, . . . , K, (15)
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where ti are discrete points.
The evaluation of the polynomials at discrete points ti, t0 < ti < tf ,

reduces to the coefficients aj at these points due to the Lagrange condition,
defined by uj(ti) = δji, where in this case δji is the Kronecker delta. The
Kronecker delta is a function of two variables, defined as follows:

δji =

{

1, if j = i

0, if j 6= i.
(16)

Therefore, only a solution for the unknown coefficients aj needs to found.
The location of the points ti, i = 1, ...K, named collocation points, are chosen
to correspond to the shifted roots of an orthogonal Legendre polynomial of
degree K (citealpvilladsen1995). Note that Legendre polynomials are solu-
tions to the Legendre’s differential equation:

d

dx

[

(1 − x2)
d

dx
Pn(x)

]

+ n(n+ 1)Pn(x) = 0. (17)

For example the fifth order Legendre polynomial is defined by:

P5(x) =
1

8
(63x5 − 70x3 + 15x), (18)

which obviously results in five (orthogonal) roots. For a time period of t0 = 0
and tf = 1 the roots are shown in Figure 2.

Figure 2: Orthogonal roots of the fifth order Legendre polynomial in the
interval [t0 = 0, tf = 1], where t1 = 0.0469101, t2 = 0.23076535, t3 = 0.5,
t4 = 0.76923465 and t5 = 0.9530899.

Parameterizing the dynamic equations of the metabolites A, B, C and E
results in the representation of the seven variables (for metabolite concentra-
tions and flux rates) by novel parameters at each orthogonal root, depicted
in Figure 3.
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Therefore, the equations for metabolite A considering K = 5 at the or-
thogonal roots are given by:

A(ti) = A0 · φ0(ti) + A1 · φ1(ti) + A2 · φ2(ti) + A3 · φ3(ti) + A4 · φ4(ti) + A5 · φ5(ti), i = 1, . . . , 5. (19)

Figure 3: Representation of the variables by new parameters at discrete
points t1 to t5.

Hence, the equation dA
dt

= v1 is parameterized at the roots of the orthog-
onal polynomial by the following:

A0 · φ̇0(ti) + A1 · φ̇1(ti) + A2 · φ̇2(ti) + A3 · φ̇3(ti) + A4 · φ̇4(ti) + A5 · φ̇5(ti) − (v1i
) = 0, i = 1, . . . , 5, (20)

with

φ̇j(ti) =
dφj

dt
, j = 0, . . . , 5. (21)

The equations of the metabolites B, C and E can be parameterized anal-
ogously.

Extension to orthogonal collocation on finite elements

Above we describe the global collocation. The global collocation requires a
very large number of coefficients for an acceptable approximation of functions
that contain both steep fronts and flat regions (requiring a very large K). An
alternative to global collocation uses piecewise polynomial approximations.
For the extension from the global (orthogonal) collocation to orthogonal col-
location on finite elements, the interval (time period) is divided into a number
of intervals, named finite elements (Carey and Finlayson, 1975; Cuthrell and

6



Biegler, 1987; Čižniar et al , 2005). Orthogonal collocation is then applied
to each finite element. A finite element ∆ζn with n = 1, . . . , e, where e is
the number of finite elements, is bounded by two points ζn and ζn+1 with
∆ζn = ζn − ζn+1. The orthogonal properties obtained with global collocation
are preserved by mapping the interval t ∈ [t0, tf ] used in the global collo-
cation into each finite element ∆ζn by ζn = t0 and ζn+1 = tf . Thus, the
location of the Legendre polynomials are mapped to the points:

tn,i = ζn + ti, n = 1, . . . , e i = 0, . . . , K. (22)

In Figure 4, K = 5 and the number of finite elements is three (e = 3).
Accordingly, the orthogonal roots of ∆ζ2 from the example in Figure 4 are
given by t2,1 = 1.0469101, t2,2 = 1.23076535, t2,3 = 1.5, t2,4 = 1.76923465
and t2,5 = 1.9530899.

Figure 4: Illustration of the evaluation points in an example with K = 5 and
e = 3. Considered are the time period [t0 = 0, tf = 3].

With help of the orthogonal collocation on finite elements the solution of
the differential equations can now be approximated by:

ũ(t) =
K

∑

j=0

an,j · φj(t); φj(t) =
∏

0≤k≤K
k 6=j

t− tn,k

tn,j − tn,k

, n = 1, . . . , e. (23)

To enforce continuity at the endpoints of each finite element the polyno-
mial ũ(t) is extrapolated to tn,f with

ũ(ζn+1) = ũ(tn,f ) =

K
∑

j=0

an,j·φj(tn+1,0) =

K
∑

j=0

an,j ·φj(tn,f ), n = 1, . . . , e−1. (24)

The result of the extrapolation provides an accurate initial condition an+1,0

for the next finite element and polynomial ũ(ζn+1).
The optimization problem given in Eq. (1) can now be solved easily with

any solver. For the example metabolic network, the linear programming
(LP) formulation described in Eq. (2) including the ODEs discretized on
finite elements and the continuity conditions becomes:
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Objective : max
∑

E(tn,i) n = 1, . . . , 3 i = 1, . . . , 5

s.t.

A(t1,0) = A0 = 2

B(t1,0) = B0 = 2

C(t1,0) = C0 = 2

E(t1,0) = E0 = 2

0 = A(t)L ≤ A(t) ≤ A(t)U = 100

0 = B(t)L ≤ B(t) ≤ B(t)U = 100

0 = C(t)L ≤ C(t) ≤ C(t)U = 100

0 = E(t)L ≤ E(t) ≤ E(t)U = 100

0 = vm(t)L ≤ vm(t) ≤ vm(t)U = 100 m = 1, . . . , 3,

∀n, i 1 ≤ n ≤ 3, 1 ≤ i ≤ 5 (25)

RA(tn,i) =
dÃ(tn,i)

dt
−

dA(tn,i)
dt

=
∑K

j=1 An,j · φ̇j(tn,i) − (v1n,i
) = 0

RB(tn,i) =
dB̃(tn,i)

dt
−

dB(tn,i)
dt

=
∑K

j=1 Bn,j · φ̇j(tn,i) − (v1n,i
+ v2n,i

) = 0

RC(tn,i) =
dC̃(tn,i)

dt
−

dC(tn,i)
dt

=
∑K

j=1 Cn,j · φ̇j(tn,i) − (−v1n,i
+ v2n,i

) = 0

RE(tn,i) =
dẼ(tn,i)

dt
−

dE(tn,i)
dt

=
∑K

j=1 En,j · φ̇j(tn,i) − (−2v2n,i
+ v3n,i

) = 0

∀n n = 1
∑K

j=1 An,j · φj(0) − A0 = 0
∑K

j=1 Bn,j · φj(0) − B0 = 0
∑K

j=1 Cn,j · φj(0) − C0 = 0
∑K

j=1 En,j · φj(0) − E0 = 0

∀n 2 ≤ n ≤ 3
∑K

j=1 An−1,j · φj(1) −
∑K

j=1 An,j · φj(0) = 0
∑K

j=1 Bn−1,j · φj(1) −
∑K

j=1 Bn,j · φj(0) = 0
∑K

j=1 Cn−1,j · φj(1) −
∑K

j=1 Cn,j · φj(0) = 0
∑K

j=1 En−1,j · φj(1) −
∑K

j=1 En,j · φj(0) = 0,

where An,i, Bn,i, Cn,i and En,i are the concentrations of each metabolite and
v1n,i

, v2n,i
and v3n,i

are the reaction rates at time points (collocation points)
tn,i, 1 ≤ n ≤ 3, 1 ≤ i ≤ 5, respectively. The solution of the coefficients at
the orthogonal roots are shown in Table 1.
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Coefficients at Metabolites Reactions

orthogonal roots A B C E v1 v2 v3

t1,1 2.1718 2.1699 1.8264 6.6948 3.5145 0.0000 100.0000
t1,2 2.7041 2.7083 1.3000 25.0679 2.2731 0.0000 100.0000
t1,3 3.1272 3.1148 0.8604 52.0258 1.1273 0.0000 100.0000
t1,4 3.5343 3.6886 0.6199 78.6026 2.4683 1.6725 99.8657
t1,5 4.2570 4.9705 0.4566 95.8246 5.7828 4.7368 99.6196
t2,1 5.3734 8.2838 1.5370 100.0000 17.0817 40.9647 81.9294
t2,2 8.1914 18.1922 5.8095 100.0000 13.3301 36.1209 72.2418
t2,3 11.0149 29.8208 11.7909 100.0000 8.2626 29.5769 59.1538
t2,4 13.3374 39.5453 16.8704 100.0000 10.9606 26.1612 52.3224
t2,5 16.1823 47.2328 18.8681 100.0000 21.4360 27.0487 54.0973
t3,1 18.3737 52.0302 19.2827 100.0000 21.8114 27.4171 54.8342
t3,2 21.5117 59.7985 20.7750 100.0000 13.0969 23.4084 46.8168
t3,3 24.3361 68.6359 23.9638 100.0000 10.0392 22.0947 44.1893
t3,4 28.2376 78.8247 26.3496 100.0000 21.6905 25.2728 50.5456
t3,5 33.7625 89.3620 25.8370 100.0000 39.9244 29.4936 58.9871

Table 1: Results of metabolite concentrations and reaction rates at different
orthogonal roots. The LP problem given in Eq. (25) was solved by the
linprog function in MATLAB.
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