Supplemental data for

Title: Stabilization of RNT-1, the RUNX homolog of *Caenorhabditis elegans*, by oxidative stress through a MAP kinase pathway

Authors: Kiho Lee¹, Jiwon Shim¹, Jaebum Bae², Young-Joon Kim² and Junho Lee¹*

¹From Research Center for Cellulomics, Department of Biological Sciences, WCU Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 151-742, South Korea

²Department of Biochemistry, College of Life Science and Technology, Yonsei University, Seoul 120-749, South Korea

Purpose	Name	Sequence	
To detect mRNA of <i>rnt-1</i>	rnt 1 in citu 1	TTTGACAATCGTTATACATTTGGCG	
by in situ hybridization	IIIt-I III Situ -I	CCGATGATGGTGGCC	
To detect mRNA of <i>rnt-1</i>	rnt 1 in citu 2	GGCCACCATCATCGGCGCCGAATG	
by in situ hybridization	IIIt-1 III Situ -2	TATAACGATTGTCAA	
To detect mRNA level of	rnt 1 0 1	GACCAAGGGATGCGAGAATA	
<i>rnt-1</i> by qPCR	1111-1 Q -1		
To detect mRNA level of	rnt 1 0 2	GAAGGATGTGGTCCTGGAGA	
<i>rnt-1</i> by qPCR	IIII-1 Q -2		
To clone <i>pmk-1</i> into L4440	nmk 1 C 1	AA <u>CCATGG</u> ATGTTTCCACAGACAA	
vector for RNA <i>i</i>	ршк-1 С -1	CAATG	
To clone <i>pmk-1</i> into L4440	nml 1 C 2	AAA <u>GTCGAC</u> CTACGATTCCATTTTC	
vector for RNA <i>i</i>	ршк-т С -2	ТССТ	
To clone <i>pmk-1</i> into		A <u>GGATCC</u> ATGTTTCCACAGACAAC AATGGA	
pcDNA3.1 for expressing in	pmk-1 flag-1		
HEK293T cell line			
To clone <i>pmk-1</i> into			
pcDNA3.1 for expressing in	pmk-1 flag-2	TCATC	
HEK293T cell line			
To clone <i>sek-1</i> into		AGGATCCATGGAGCGAAAAGGACG	
pcDNA3.1 for expressing in	sek-1 ha-1	TGAG	
HEK293T cell line			
To clone <i>sek-1</i> into			
pcDNA3.1 for expressing in	sek-1 ha-2	GTCG	
HEK293T cell line		0100	
To clone <i>sek-1</i> into			
pcDNA3.1 for expressing in	rnt-flag-1	ATGACCAACGTCTTCCATCAC	
HEK293T cell line			
To clone <i>sek-1</i> into			
pcDNA3.1 for expressing in	rnt-flag-2	AAAAGGCCTCCAAATAGTCGG	
HEK293T cell line			
To express GST-fused <i>rnt-1</i>	rnt-\$200-1	A <u>GGATCC</u> ATGACCAACGTCTTCCAT	
in E. coli	1111-5200-1	CAC	
To express GST-fused <i>rnt-1</i>	rnt-S200-2	AAA <u>CTCGAG</u> AGAAGGATGTGGTCC	
in E. coli	1111 0200 2	TGGAGA	
To express GST-fused <i>rnt-1</i>	rnt-S250-1	A <u>GGATCC</u> ATCTCAGCTGCACTTTGG	

Supplemental Table 1. Primers used in this study

in E. coli		AAA	
To express GST-fused <i>rnt-1</i>		AAA <u>CTCGAG</u> TAACTTCGGATCATC	
in E. coli	rnt-5250-2	AGAAGT	
To express GST-fused <i>rnt-1</i>		AGGATCCAAACGACCATCTTCTCCT	
in E. coli	rnt-5301-1	CGT	
To express GST-fused <i>rnt-1</i>	(0201.0	AAACTCGAGAAAAGGCCTCCAAAT	
in <i>E. coli</i>	rnt-8301-2	AGTCGG	
		CAC AGC GAA TCG ATG AAA GCT	
To mutate RN I-1 threonine	RN1-1 T215A-1	CCG ATT AAA CAA AAA GTT GAA	
serine 215 to alanine		CAG	
		CTG TTC AAC TTT TTG TTT AAT	
To mutate RNT-1 threonine	RNT-I	CGG AGC TTT CAT CGA TTC GCT	
serine 215 to alanine	1215A-1	GTG	
To mutate RNT-1 threonine	RNT-1	GTA TCC CTT AAT ACG TCT GCA	
serine 215 to alanine	T236A-1	TGC CTA TCA TCT	
To mutate RNT-1 threonine	RNT-1	AGA TGA TAG GCA TGC AGA CGT	
serine 215 to alanine	T236A-2	ATT AAG GGA TAC	
To mutate RNT-1 threonine	RNT-1 S242A	TGC CTA TCA TCT CCA GCA ATT	
serine 215 to alanine	-1	TTT ATA ACT CCA ACT TCT GAT	
To mutate RNT-1 threonine	RNT-1	ATC AGA AGT TGG AGT TAT AAA	
serine 215 to alanine	S242A-2	A AT TGC TGG AGA TGA TAG GCA	
To mutate RNT-1 threonine	RNT-1 S255A	AAA CGA CCA TCT GCT CCT CGT	
serine 215 to alanine	-1		
To mutate RNT-1 threenine	RNT-1		
serine 215 to alanine	S255A 2	AGC AGA TGG TCG TTT	
To mutata PNT 1 thraonina	DNT 1 T272A		
serine 215 to alanine	_1		
To mutate RNT-1 threenine	PNT_1	TCG TCT TTT TGA TTC TAC AGA	
serine 215 to alanine	$T_{273\Delta_{-2}}$	TTC CGG AGC TTC TTG AAT TAA	
To mutate RNT-1 threenine	RNT_1 \$29/A	ACT TCA TCG AAT AGT TCT GCT	
serine 215 to alanine	-1	CCG ACT ATT TGG AGG	
To mutate RNT-1 threenine	PNT_1	CCT CCA AAT AGT CGG AGC AGA	
serine 215 to alanine	$S29/\Delta_2$	ACT ATT CGA TGA AGT	
To detect DNA level of	52747-2		
y_{hn} l promoter region A	vhp-1 A Q -1	GGGGATCATTCCATTTTCCT	
To detect DNA level of			
<i>whp-1</i> promoter region A	vhp-1 A Q -2	CCTGTTTGCATCCAGGATCT	
To detect DNA level of			
<i>vhp-1</i> promoter region B	vhp-1 B Q -1	TTGCCGTATTTTCTCTCATTCA	
To detect DNA level of		GAAGACCTCGGCCATCTGTA	
<i>vhp-1</i> promoter region B	vhp-1 B Q -2		
To detect DNA level of			
<i>whp-1</i> promoter region C	vhp-1 C Q -1	TAATCCTGGGTTCCCATCCT	
To detect DNA level of			
<i>vhp-1</i> promoter region C	vhp-1 C Q -2	GGATTTGCTTCTCGGAAGTG	
To detect DNA level of			
<i>vhp-1</i> promoter region D	vhp-1 D Q -1	ACCTACCTGCCTGCCTACCT	
To detect DNA level of			
<i>vhp-1</i> promoter region D	vhp-1 D Q -2	AACCACTTACGTGCCTACGG	
To detect mRNA level of			
<i>vhp</i> -1 by aPCR	vhp-1 Q -1	CTTCGATCTCGCCAAACTTC	
To detect mRNA level of	1 1 0 5		
<i>vhp</i> -1 by qPCR	vhp-1 Q -2	IGGAIGAIGCACIIIIIGGA	

Gene	Description	RNT-1	References
		binding	
		sequence	
vhp-1	MAP kinase phosphatase	-9737, -9731	Mizuno, T. et al.(1)
tir-1	ortholog of the human TIR domain-	-5979, -5967	Liberati, N.T. et
	containing protein SARM		<i>al</i> .(2)
nas-15	astacin-like metalloprotease	-1195, -1066	Mohrlen, F., Hutter,
	-		H. & Zwilling, R.
			(3)
nhr-274	nuclear hormone receptor family	-4547, -4439	Okkema, P.(4)
clec-151	C-type LECtin	-3921, -3914	Wormbase
tag-260	Predicted E3 ubiquitin ligase	-2567, -2301	Wormbase
eat-20	Fibrillins and related proteins containing	-4698, -4475	Shibata <i>et al.</i> , (5)
	Ca2+-binding EGF-like domains		
ell-1	RNA polymerase II elongation factor	-581, -291	Wormbase
mvk-1	Mevalonate kinase	504, 597	Wormbase(Kuwaba
			ra PE, O'Neil N)

Supplemental Table 2. A list of candidate genes from ChiP-seq experiments

Supplemental references

- Mizuno, T., Hisamoto, N., Terada, T., Kondo, T., Adachi, M., Nishida, E., Kim, D. H., Ausubel, F. M., and Matsumoto, K. (2004) *The EMBO journal* 23, 2226-2234
- 2. Liberati, N. T., Fitzgerald, K. A., Kim, D. H., Feinbaum, R., Golenbock, D. T., and Ausubel, F. M. (2004) *Proceedings of the National Academy of Sciences of the United States of America* **101**, 6593-6598
- 3. Mohrlen, F., Hutter, H., and Zwilling, R. (2003) *European journal of biochemistry / FEBS* **270**, 4909-4920
- 4. Okkema, P. (2005) *WormBook*
- 5. Shibata, Y., Fujii, T., Dent, J. A., Fujisawa, H., and Takagi, S. (2000) *Genetics* **154**, 635-646

Supplemental figures

Supplemental figure 1. Stabilization of RNT-1 in worms after the MG132 treatment. The photo shows the anti-GFP western blot data using the N2; Ex[GFP::RNT-1] worm lysate. Same amounts of the worm lysates were used as confirmed by the actin western analysis.

Supplemental figure 2. Transcription level of *rnt-1* in the oxidative stress condition. The mRNA level of *rnt-1* was detected by quantitative PCR at each time point with 0.1 M paraquat treatment.

Supplemental figure 3. *rnt-1* mutants alleles show defects in oxidative stress response. The defects were rescued by RNT-1 expression under its own promoter or under an intestine-specific promoter, *act-5*, in the *rnt-1*(ok351) background.

Supplemental figure 4. Partial involvement of *kgb-1* and *mek-1* in the stabilization of RNT-1. RNA*i* of *kgb-1* and *mek-1* partially decreased the stabilization of RNT-1.

Supplemental figure 5. (A) The amino acid sequence of RNT-1. The red underline represents the conserved MAPK target sequence, Pro-X-Ser/Thr-Pro in RNT-1. The blue underlines represent the minimal MAPK target sequences in 201 to 250 amino acids of RNT-1. (B) Kinase assay of 201 to 250 amino acids of RNT-1 and mutations of putative MAPK target sequences in 201 to 250 amino acids of RNT-1.

Supplemental figure 6. Additional survival experiments of *vhp-1* RNAi in wild type N2 and *rnt-1*(tm491) animals in the 0.1 M paraquat background.

Lee et al., Supplemental Figure 2

Lee et al., Supplemental Figure 3

Lee et al., Supplemental Figure 4

 Paraquat
 +
 +
 +

 L4440
 L4440
 mek-1
 kgb-1

Lee et al., Supplemental Figure 5

В

