đb	Residue ¹	Site ²
84	10	ISNE <u>VLDV</u>
86	122	ISQE <u>AVMA</u>
89	122	<u>FSAE</u> EYSD
89	156	ASME <u>ANDE</u>
92 ^{3,4}	85	VSLE DLSK
93 ^{3,4}	13	LSLE <u>SIED</u>
93	156	ISLE <u>DLKE</u>
94 ³	11	DSLE <u>GYGV</u>
94	95	VASE <u>EYPA</u>
94	275	VSNE RVTP
95	13	DSLE <u>DYTE</u>
95	117	IAVE <u>TVIP</u>
95 ⁴	133	QGGE <u>TVTQ</u>
95 ³	260	ISTE <u>DIKE</u>
96	65	VSTE <u>DISD</u>
97	13	ASLE <u>NQDG</u>
97	66	ISAE EHEE
97	468	ASNE SMLE
97	532	TSLE <u>SFNS</u>
120 ^{3,4}	54	ISHE NFGT
120	84	YGFE <u>RVSS</u>
120	163	VGLE <u>NYNE</u>

Table S1. Cleavage sites of ϕKZ proteins detected by a semi-tryptic peptide.

129	262	IATE <u>THHF</u>
153	52	ISQE <u>ANFA</u>
162 ³	17	ASLE <u>RVSD</u>
162	137	PSNE DISI
162	200	TALE NYIG
162	258	ASIE <u>VLDN</u>
163	54	FALE <u>SIDP</u>
175	210	PALE NYED
177	60	ASVE EFFE
177	297	LASE ANNV
180_180_2	505	YSEE <u>AIAE</u>
184	108	YGHE <u>HFDE</u>
203 ³	653	ESLE SYVD
303	60	YSNE <u>EWVE</u>
303 ³	153	IFVE <u>ADTT</u>
303	268	AALE <u>EFIE</u>
303	366	VSNE GLID

¹The coordinate of the conserved glutamate immediately preceding the cleavage.

²Sequence identified in a semi-tryptic fragment is underlined.

³Peptide assigned with a minimum peptide identification probability <95% according to Scaffold

⁴ low abundance peptide.

¢KZ gp	фКZ	201¢2-1	201 ¢2-1	фРАЗ др	фраз
	cleavage	gp	cleavage		cleavage
	site/motif ¹		site/motif ¹		$motif^1$
84	ISNE-10	145	ISTE-9	86	LSME-10
86	ISQE-122	148	<u>ISQE-113</u>	89	VSNE-110
89	FSAE-122	151	LAFE-112nr	92	FSKE-118
	ASME-156		ASLE-166		YSME-145nr
92	VSLE-85	154	VSNE-79	95	ISTE-84
93*	LSLE-13	155	VSTE-13 NA	100	LSQE-12 NA
	ISLE-156				VSTE-216
			AALE-327		
94*	DSLE-11	156		99	
	VSNE-275		PSNE-157		<u>PANE-156</u>
95*	DSLE-13	157	VSNE-15 NA	100	LSQE-12
	IAVE-117		NA		nr
	QGGE-133		NA		nr
	ISTE-260		IALE-207		VSTE-216
96	VSTE-65	158	LSLE-60	101	VSTE-71
97	ASLE-13	159	NA	102	NA
	ISAE-66		NA		NA
	ASNE-468		ELSE-567		TTVE-494
	TSLE-532		ASLE-630nr		TSLE-555nr

Table S2. Conservation of cleavage sites detected by mass spectrometry in ϕKZ and $201\phi 2-1$ in homologous proteins.

no nomorog		193	GSLE-139	no homolog	
120	ISHE-54	200	IGTE-57	136	IGNE-52
	YGFE-84		YGFE-86		YGFE-81
	VGLE-163		VALE-161		VGLE-163
129	IATE-262	214	MEAE-272	148	LEAE-186
153	ISQE-52	238	ISTE-64	176	VSTE-68
162*	ASLE-17	246	IANE-16 NA	186	ISME-16
	PSNE-137		TSVE-128nr		TSVE-124nr
	TALE-200		ASIE-203		AAVE-193
	ASIE-258		VSLE-258		sites nr
163*	FALE-54	247	TALE-50	187	IGLE-50
175	PALE-210	268	PALE-218	205	PALE-216
177	ASVE-60	271	VAVE-61	208	ASVE-60
	LASE-297		LRNE-293		
178		274/3	VTFE-275	211	
180_180_2	YSEE-505	275	YSEE-504	212	YSKE-504
184	ASLE-13 NA	280	KGLE-15	217	LSLE-11 NA
	NA		VSAE-72		NA
	YGHE-108		NA		NA
203	ELSE-653	300	nr	233	ASFE-102
303	NA	455	VSNE-20	375	NA
	YSNE-60		NA		NA
	NA		PGME-151		ISIE-16
	150		NTA		NA

AALE-268	NA	NA
VSNE-366	<u>ISNE-179</u>	NA

¹ Red indicates cleavage confirmed by detection of semi-tryptic peptide in mass spectral analyses. Identified cleavages in 201¢2-1 are from (Thomas *et al.*, 2010). Black indicates putative cleavage sites in homologous proteins determined by Blastp alignment, cleavages/motifs aligning perfectly are underlined. nr, refers to putative cleavage motif found near (usually within 10 residues), but not aligning with, a known cleavage site in an homologous protein. sites nr, refers to putative cleavage motifs near, but not aligning with, a known cleavage site in an homologous protein. NA, refers to no alignment in corresponding region of homolog [some putative cleavage motifs were identified in these regions based on their being within ~20 residues of the N-terminus of the protein and therefore candidates for a capsid targeting sequence or CTS (Mullaney and Black, 1996)]. Blank, refers to no identifiable cleavage site. Asterisks indicates members of the PF12699 family.

Table S3. Conservation of T4 processed proteins among representatives of the T4-like phage subfamily. Taxonomically, JS98, RB43, RB49 and 44RR2.8t are members of the T4-like phage genus, whereas KVP40 and P-SSM2 are outside of the T4-like phage genus (Lavigne *et al.*, 2009). Divergence is measured as diverged from 100-percent identity of a BlastP match. The terminase protein, tail sheath and tube proteins are included as being representatives of highly conserved morphogenesis proteins. Proteins shaded in the same color have genes located in the same module. Proteins with names/gps in red indicate high abundance capsid proteins (>100 copies). A dash indicates no homologs were identified using BlastP.

				[Divergend	e of hom	ologs to T4 p	proteins (%	5)					
T4 protein,	terminase	sheath	tube	portal	core	core	protease	scaffold	capsid	vertex	IPI,	IPII,	IPIII,	alt,
functional classification:	gp17,	gp18,	gp19,	gp20,	gp67,	gp68,	gp21,	gp22,	gp23,	gp24,				
	essen	essen	essen	essen	essen	semi- E	essen	essen	essen	essen	aux	aux	aux	aux
JS98	18	29	29	25	47	29	11	22	16	30	-	-	14	-
RB43	31	39	39	47	50	48	38	47	30	58	-	-	-	-
RB49	31	38	51	43	60	43	44	46	33	55	-	-	-	-
44RR2.8t	37	40	36	43	47	50	45	53	30	56	-	-	-	-
KVP40	46	52	44	54	80	60	51	62	40	70	-	-	-	-
P-SSM2	65	73	68	62	-	-	58	76	65		-	-	-	-

¹Classification of gene function as essential (essen), semi-essential (semi-E) or auxillary (aux) was obtained from (Miller et al., 2003)

Table S4. Conservation of the homologs to ϕ KZ processed proteins among representatives of the ϕ KZ-related phages. Divergence is measured as 100-percent identity (determined using BlastP). The terminase protein, tail sheath and tube proteins are included as being representatives of highly conserved morphogenesis proteins. Gp90 is also included as it is an abundant inner head protein. Proteins shaded in the same color have genes located in the same module. Proteins with names/gps in red indicate high abundance capsid proteins (>100 copies). A dash indicates no homologs were identified using BlastP.

	Divergence of homologs to ϕ KZ proteins (%)													
				RNAP										
φKZ	terminase	sheath	tube	beta''										
protein:	gp25	gp29	gp30	gp80	gp84	gp86	gp89	gp90	gp92	gp93	gp94	gp95	gp96	gp97
201 	40	27	29	44	66	76	46	53	69	73	71	79	73	70
φPA3	31	30	27	35	64	76	37	52	62	62	79	74	67	70
EL	73	76	79	77	78	-	74	84	-	-	-	-	-	-

φKZ	capsid					protease		RNAP	RNAP		helicase	
protein:	gp120	gp129	gp153	gp162	gp163	gp175	gp177	gp178	gp180_180_2	184P	gp203	gp303
201 	36	49	73	76	55	45	59	47	32	41	49	72
φРАЗ	32	44	68	73	47	41	53	42	25	45	42	70
EL	79	80	-	-	-	71	-	70	68	-	71	-

References

- Lavigne, R., Darius, P., Summer, E.J., Seto, D., Mahadevan, P., Nilsson, A.S., *et al.* (2009) Classification of *Myoviridae* bacteriophages using protein sequence similarity. *Bmc Microbiol* **9**: 224.
- Miller, E.S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T. and Ruger, W. (2003) Bacteriophage T4 Genome. *Microbiol. Mol. Biol. Rev.* 67: 86-156.
- Mullaney, J.M. and Black, L.W. (1996) Capsid targeting sequence targets foreign proteins into bacteriophage T4 and permits proteolytic processing. *J. Mol. Biol.* **261**: 372-385.
- Thomas, J.A., Weintraub, S.T., Hakala, K., Serwer, P. and Hardies, S.C. (2010) Proteome of the large *Pseudomonas* myovirus 201phi2-1: Delineation of proteolytically processed virion proteins. *Molecular & Cellular Proteomics* **9**: 940-951.

Supplemental Figure 1. Electron micrograph of purified tailless ϕKZ heads negatively stained with 1% phosphotungstic acid.

Supplemental Figure 2. Sequence logo representing a total of 39 cleavage sites in ϕ KZ determined by detection of a semi-tryptic peptide. Logo was created using Weblogo (http://weblogo.berkeley.edu/). The co-ordinates of the cleavage sites used for construction of the logo are listed in Table S1.

Supplemental Figure 3. Montage of serial slices through a cryo-electron tomogram of a ϕKZ capsid produced in the presence of 9-aminoacridine. Each slice is 172 nm across and 1.6 nm thick, with a separation between slices of 4.7 nm.

Supplemental Figure 4. Purified ϕ KZ capsid-related particles produced in the presence of 9-aminoacridine stained with 2.5% ammonium molybdate and 10% trehalose.

Supplemental Figure 5. Electron micrograph of empty ϕ KZ capsid shells after osmotic shock treatment. Sample is Fraction 6 of the glycerol gradient in Figure 7A. Sample was negatively stained with 1% phosphotungstic acid. Space bar represents 100 nm.

