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1 DETAILS REGARDING THE MCMC SAMPLER
As mentioned in the paper Markov Chain Monte Carlo (MCMC)
is a technique used to obtain samples from probability distributions
known only up to a normalising factor. Given thatp(~θ) is a non-
negative integrable function, the Metropolis Hastings algorithm will
provide a sequence of samples (also known as a chain) whose equi-
librium distribution is proportional top(~θ) using only evaluations
of p(~θ). If the chain is irreducible and aperiodic then the chain will
settle down to a limiting (ergodic) distribution. Irreducibility requi-
res that it must be possible to get from any two possible states of the
system to the other in a finite number of steps. A sufficient condi-
tion to ensure thatp(~θ) is the limiting distribution is that the sampler
satisfies detailed balance (1) whereπ(.) corresponds to the invari-
ant distribution andp(x, y) corresponds to the distribution used for
proposing the next step (the proposal distribution). This property
ensures that the chain is reversible (two sides are equal).

π(x)p(x, y) = π(y)p(y, x) (1)

The Metropolis algorithm ensured chain ergodicity by using only
symmetric proposals (where the probability of a forward and backw-
ard move should be equal, i.e. the proposal distribution does not
change). A generalisation by Hastings lead to the an additional
term in the acceptance probability which ensures detailed balance
for non-symmetric proposal distributions. The resulting algorithm,
named the Metropolis-Hastings algorithm is generally considered
as the workhorse of MCMC methods. The algorithm proceeds by
iteratively performing a number of steps:

• 1. Generate a sample~θnew by generating a sample taken from
a proposal distribution based on the current state

• 2. Compute the likelihood of the dataL(yD|~θnew) and calcu-
late P (~θnew|yD) = L(yD|~θnew)P (~θnew), whereP (~θnew)
refers to the prior density function.

• 3. Draw a random numberγ from a uniform distribu-
tion between 0 and 1 and accept the new step ifγ <

min
(

P (~θn+1|y
D)Q(~θn+1→~θn)

P (~θn|yD)Q(~θn→~θn+1)
, 1
)

.

∗to whom correspondence should be addressed

The ratio of Q is known as the Hastings correction and ensu-
res detailed balance, a sufficient condition for the Markov Chain
to converge to the equilibrium distribution. It corrects for sampling
biases resulting from non-symmetric proposal distributions. It corre-
cts for the fact that the probability density going from parameter set
~θn to ~θn+1 and~θn+1 to ~θn is unequal when the proposal distribution
depends on the current parameter set. It is defined as the ratio betw-
een the proposal densities associated with going fromn to n + 1
andn + 1 to n. The apparent simplicity of the algorithm makes
it conceptually attractive. Note however that naive approaches can
lead to MCMC samplers that converge slowly and/or stay in the
local neighbourhood of a local mode (Calderhead and Girolami,
2009).

Proposals Regarding the proposal distribution, we employ an ada-
ptive Gaussian proposal distribution whose covariance matrix is
based on a quadratic approximation to the cost function (Guten-
kunstet al., 2007). This matrix is computed by taking the inverse
of an approximation to the Hessian matrix of the model under con-
sideration. Such adaptation to the local geometry of the problem
results in taking larger steps in directions where the cost function
does not change much (improving efficiency of the sampler). Such
a Gaussian distribution is characterised by a positive definite covari-
ance matrixΣ, the number of dimensionsd and the vector of mean
valuesµ:

1

(2π)
d
2
√

|Σ|
e
− 1

2
(x−µ)TΣ−1(x−µ) (2)

Sampling from such a distribution is straightforward. Compute a
decomposition such thatRRT = Σ. Subsequently draw a vector
~z of N independent normal variates. Since in our case, the normal
distribution is centered around the current point, the expression for
the next point becomes~xnew = ~x + R~z. If the proposal distribu-
tion depends on the current state (asymmetric proposals), then the
proposal needs to be corrected for the imbalance in proposal den-
sities in the two directions using the Hastings term, which can be
calculated for a multivariate Gaussian proposal distribution:

Q(~θn → ~θn+1) =
1

√

|Σa|
e
− 1

2
(~θn+1−~θn)Σa

−1(~θn+1−~θn)T (3)
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Calculating the true Hessian is costly and numerically challen-
ging, which is why the approximation based on the model sensitivi-
ties is used. Depending on the model, these can either be computed
by solving the sensitivity equations, or by means of finite differe-
ncing (for which strict tolerances are required to ensure reliable
derivatives). The Hessian approximation is subsequently decom-
posed using the singular value decomposition (4), whereS is a
diagonal matrix containing the singular values.

H = USV
T (4)

The decomposition delivers a matrix of singular vectors U and
a diagonal matrix with associated singular values. Large singular
values of the Hessian matrix correspond to well constrained directi-
ons, while low values correspond to poorly constrained directions
in parameter space. In practical cases, some directions in parameter
space can be so poorly constrained that this leads to a (near) singular
Hessian (some singular values near zero). As a result, the propo-
sal distribution will become extremely elongated in these directions,
leading to proposals where parameters take on extreme values and
acceptance ratios decline due to integration failures or rejections due
to low probability density in these regions. One approach to avoid
such numerical difficulties is to set singular values below a certain
cut-off to a specific minimal value (prior to inversion) or to make use
of a trust region approach. Rather than setting a fixed cutoff, a trust
region approach (5) involves an adaptive mechanism for shrinking
the sampling kernel.

H = J
T
J+ λI (5)

HereJ corresponds to the sensitivity matrix whileI corresponds
to an identity matrix. Since the Hessian approximation corresponds
to a quadratic approximation of the cost function, we can estimate
what the cost would be at a certain point prior to sampling it. If
this cost deviates more than a certain allowed threshold, we incre-
aseλ, making the proposal more circular, otherwise we decreaseλ.
Additionally, we include non-uniform priors (when available) in the
Hessian approximation, by including their respective derivatives in
the approximation of the sensitivity matrixS.

The avoid the computation of costly inverses, we compute the
sampling matrix directly from the SVD using

R =
s
√
T√

Ndim

V
√
S−1 (6)

Here s corresponds to a problem specific (tuned) scaling factor, T
to the temperature (see section on multimodality)Ndim to the num-
ber of parameters. The inverse required for the Hastings correction
can subsequently be computed as:

Σ
−1 =

Ndim

s2T
VSV

T (7)

Since the determinant only appears in ratios, the linear scaling
needs not be explicitly calculated since it will cancel out due to the
dimensionality of the problem remaining constant:

det(Σ) =

(

Ndim

s2T

)−Ndim
∏ 1

Sii

(8)

Therefore the ratio is computed as a product of the ratios of the
singular values.

Parameter representation In order to deal with the large difference
in scales, certain parameters can be considered in log-space. Note
however, that the prior distribution is generally not invariant of the
way the model is parameterised. The transformation between para-
meters can be described by the matrix of partial derivatives with
respect to the equations which transform the parameters from one
parameterisation to another (the Jacobian of the transformation). In
order to calculate a prior distribution that is equivalent in terms of
inference under a different parameterisation, one needs to compute
the absolute value of the determinant of the Jacobian of the tran-
sformation. This corrects for the stretching and compression of the
distribution due to the reparameterisation (9).

P (f(~θ)) = P (~θ)

∣

∣
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In the case where we perform the MCMC in logarithmic space,
we obtain the following expression to be included in the acceptance
probability:

|J(θa)|
|J(θb)| =

Npars
∏

i

(

θbi
θai

)

(10)

For the Hessian based approach, the proposals can subsequently
be generated using the equation in:

~θn+1 = ~θne
N(0,Σlog) (11)

Where the Hessian approximation in log space is computed by
applying the chain rule:

δ2L

δlogθiδlogθj
=

δ2L

δθiδθj
θiθj (12)

Multi modality In some cases, posterior distributions can be multi
modal and the sampler is unable to leave a local mode within a
reasonable number of iterations. One option to improve mixing
is to start a number of parallel chains using the data at different
’temperatures’ T:

PT (y
D|~θ, T ) = P (yD|~θ) 1

T (13)

Since the cost function will flatten out for higher temperatures,
chains at higher temperatures are able to traverse the solution space
more freely. Exploiting this property, we use Metropolis-Coupled
MCMC (Calderhead and Girolami, 2009). Here multiple MCMC
chains are started where samples from the higher temperatures are
exchanged with samples at lower temperatures using switch moves.
These are performed by randomly selecting two adjacent temperatu-
res and computing an Metropolis-Hastings step using the acceptance
ratio given by:

α < min





P (yD|~θnew)
1

Tn P (yD|~θn)
1

Tnew

P (yD|~θn)
1

Tn P (yD|~θnew)
1

Tn+1



 (14)

Here one defines a joint probability space, where multiple insta-
nces of the parameter vector are concatenated. Similarly, the
objective function is copied and concatenated with each copy cor-
responding to a different temperature. Updates are performed per
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parameter group, while switch moves enable the sampler to swi-
tch the parameters between two groups. Since we are interested in
the distribution atT = 1 we only use samples from this respective
chain.

COMPUTATIONAL METHODS
All of the algorithms were implemented in Matlab (Natick, MA).
Numerical integration was performed using compiled MEX files
using numerical integrators from the SUNDIALS CVode package
(Lawrence Livermore National Laboratory, Livermore, CA). Abso-
lute and relative tolerances were set to10−8 and10−9 respectively.
Integration time for a single integration was allowed to be 10
seconds at most after which an integration is assumed to fail and a
large error is returned. Throughout the analysis integration failures
were carefully monitored.

In order to attain an adequate acceptance rate and good mixing,
the proposal scaling was determined during an initial tuning stage.
This tuning was performed by running many short chains (100 ite-
rations each), targeting an acceptance rate between 0.2 and 0.4. If
the acceptance rate was high, 10% was added to the scale, while
10% was substracted in the case where the acceptance was too
low. Interestingly the chains at higher temperatures had very similar
acceptance rates once started. For the MCMC method, no cutoff was
necessary in the case of the uniform priors, while the cut off was set
to 10−6 in the case of log uniform priors. It was observed that this
greatly affected the acceptance rate.

JAK-STAT MODEL EQUATIONS
Model equations for the JAK-STAT model were specified as (15).
The model is driven by an external inputu1, which is based on a
spline interpolation to phosphorylated EpoR data. See Raueet al.
(2009) for further details.

ẋ1 = 2
Vnucleus

Vcyto

(p4x13)− p1x1u1 ẋ8 = p4x7 − p4x8

ẋ2 = p1x1u1 − 2p2x
2
2 ẋ9 = p4x8 − p4x9

ẋ3 = p2x
2
2 − p3x3 ˙x10 = p4x9 − p4x10 (15)

ẋ4 =
Vcyto

Vnucleus

(p3x3)− p4x4 ˙x11 = p4x10 − p4x11

ẋ5 = p4x4 − p4x5 ˙x12 = p4x11 − p4x12

ẋ6 = p4x5 − p4x6 ˙x13 = p4x12 − p4x13

ẋ7 = p4x6 − p4x7
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2 GAUSSIAN MEASUREMENT ERRORS
In the case of additive Gaussian measurement noise one can com-
pute the PPD directly from the PD as follows:

P (yn|θ) = (16)
∫ ∞

−∞

K1P (yn|yp)P (yp|~θ)dyp = (17)

∫ ∞

−∞

K1e
−

(yn−yp)2

2σ2 e
−

(yp−y(~θ))2

2σ2 dyp = (18)

K2e
−

(yn−y(~θ))2

4σ2 (19)

HereK1 andK2 denote different normalization constants inde-
pendent of~θ. P (yp|θ) is the posterior probability of predictions
while P (yn|θ) represents the probability of observingyn in a new
measurement. FurthermoreP (yt|yp) refers to the error model of the
new measurement. Since the sampling is self-normalising these are
not required. Therefore, the prediction noise can be taken into con-
sideration by multiplying the measurement noise in the error model
by a factor of

√
2. Including this step avoids the requirement to add

simulated Gaussian noise to the PD. Additionally, this will reduce
the number of samples required for an accurate estimation of the
variance reduction.
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Fig. 1. Expected variance reduction compared with true variance reduction
after the experiment has been performed.
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3 SAMPLING BIAS
The most critical component of the experiment design strategy is
the sampling step. Since every point of the MCMC is treated as
a potential measurement result, this also includes samples farther
from the high density region of the posterior. Since the density of
samples is lower here, the number of samples to estimate the new
posterior variance from is small. In the most extreme case (say
the outermost sample), the expected mean after incorporating the
new measurement would be biased towards the high density region,
while the variance will be underestimated. This worst case scenario
is illustrated in Figure 2 for a 1D distribution.
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Fig. 2. Illustration of the effect of a new datapoint on the Posterior Predi-
ctive Distribution (PPD). The stems indicate the samples fromthe MCMC,
where the one selected as new outcome value for the measurement is deno-
ted with a star. The lines referring to the different distributions correspond
to analytic probability density functions based on computedmeans and vari-
ances. Shown are the posterior before incorporating the newdatapoint, the
distribution of the measurement, the distribution based on the analytic mean
and variance of the new posterior and the distribution basedon the mean and
variance estimated from resampling as performed in the proposed method

We are however not interested in a single variance, but rather in
the expected value for the variance over the entire posterior. Given
that most of the resampling will take place in the high density region
it is postulated that the estimation error will not be very large. It
is expected that the method will show slight bias for low numbers
of included samples, but that the bias will quickly decrease as the
sample size increases. Several factors play a role in this sampling.
Some of these are: the number of points included in the sampling
step, the dimensionality of the problem, the difference between the
variance of the posterior and the new measurement and the amount
of correlation between measurement and quantity of interest. We’ve
investigated this sampling step by performing tests using multidi-
mensional Gaussians. One example of such a test is shown in Figure
4. Here it can be observed that the bias of the sampling approach is
indeed more pronounced for smaller sample sizes. Interestingly, low
correlations (associated with low variance reductions) result in sli-
ghtly more bias. Furthermore, the linear method is unbiased, even at
low sample sizes. Note however that this method depends on the fact
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Fig. 3. Comparison of nested MCMC approach to resampling technique for
the banana function.

that the PPD is Gaussian, an assumption which in this experiment
holds by design, but is questionable for real PPDs.

The effect of the different variances were also investigated. There
are three variances that might play a role. The variance of the old
posterior, on the side of the quantity of interest, the variance of the
posterior where the measurement will take place, and the variance
associated with the uncertainty of the new measurement. Intere-
stingly, numerical experiments showed that the absolute bias was
unaffected by the variance of the quantity of interest.

To investigate these effects in the non-linear case we performed
an analysis on a 2D banana function. The residual vector used in
this analysis was defined as:

~r(~x) =
[√

10
(

x2 − x
2
1

)

,
√
2− x1

]

(20)

with x1 and x2 as the parameters. The associated probability
density function was given by:

C(~x) = e
Σir

2
i (21)

Here the variances for each sample of the MCMC chain were
computed in two ways. First by means of running a new MCMC for
each sample of the previous posterior (MCMCMC) as well as using
the Sampling Variance Reduction (SVR). The results are shown in
Figure 3. What can be observed here is that although the extremely
high and low values do not agree well, most of the chain results in
the same values for the variance and the mean is still well estima-
ted. This can also be observed when considering the actual predicted
variance for different values ofσ (see Figure 5).
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Fig. 4. Estimated variance reduction as a function of number of pointsincluded in the analysis. For PPD a multivariate Gaussian distribution was used, with
output standard deviation 5, and measurable standard deviations 4 and 3. The measurement accuracy of the new measurement was assumed to be Gaussian
with a standard deviation of 1. All correlation coefficientswere set to the same value. Each experiment was repeated 50 times. Shown in red, black and green
are the mean variance reductions based on sampling, the linearapproximation (which is exact for a Gaussian) and the true analytical solution. Dashed lines
indicate 95 percentile bounds. Figure titles indicate usedcorrelation and estimated slope of the Effective Sample Size as a function of the number of sample
points.
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Fig. 5. Comparison of nested MCMC approach to resampling technique for
the banana function.
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4 ADDITIONAL MODEL RESULTS
The PPDs for all states are shown in Figure 6. Additionally, we
performed a similar analysis for the decay time of state 2. This decay
time is defined as the time point where the simulated response has
decreased to 50% of the maximum value. As shown in figure 7, this
distribution is far from Gaussian and contains multiple modes.
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Fig. 6. Posterior predictive distribution of model predictions (colours) with
95% credible intervals (black lines). Top: Unmeasured internal model pre-
dictions. Bottom: Measured model output, data± standard deviation and
residual distributions.
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Fig. 7. Distribution of decay times (time until the 50% mark is crossed)of
state two for the entire ensemble.

Subsequently a similar analysis was performed to attempt to
reduce the variance of the decay time of state two. Interestingly,
despite the clear non-Gaussian nature of the PPD, the results from
the LVR and sampling method agreed reasonably well (see Figure
8). Subsequently, a more dense sampling was performed using the
LVR (since it is orders of magnitude faster), resulting in Figure 9. It
can clearly be seen that also in this case, measuring additional time
points in the states that were already observed, would not reduce the

variance appreciably. It can also be observed that the most benefi-
cial experiment would be an early measurement of state 3 and a late
measurement of state 1.
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Fig. 8. Top left: Expected variance reduction based on the sampling method.
Top right: Median Effective Sample Size for a specific experimental combi-
nation. Bottom left: Expected variance reduction based on LVR. Bottom
right: Difference between LVR and sampling method.
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4.1 Leave one out experiment
In order to test our approach, we performed OED using only a subset
of the data. In order to do this, we computed the posterior distribu-
tion omitting data corresponding to the total amount of cytoplasmic
STAT. Of this observable only the first data point was included.
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Subsequently we performed experiment design for the time points
omitted earlier. Hence computing expected variance reductions were
these to be included. As measurement accuracy we used the standard
deviations of the omitted experiments. The results of this analy-
sis are shown in Figure 10. We can see that the expected Variance
Reductions agree well with the actual reductions obtained.
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Fig. 10. Expected variance reduction compared with true variance reduction
after the experiment has been performed.

4.2 Prior dependence
Since parameter two and three were non-identifiable from the data,
we had to assume a bounded prior distribution for these. What we
used was a log-uniform prior bounded between two values. In order
to test the prior dependence, we extended the range of the log uni-
form priors for parameters two and three (from[10−8, 102] and
[10−8, 101.5] to [10−8, 103] and[10−8, 103]). As shown in Figure
11 the measurement of state 1 at an early and late time point is
sensitive to the choice of prior. The expected variance reductions
obtained when measuring state 2 or 3 in combination with state 1
were more robust.
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Fig. 11. Expected variance reductions considering narrow and wide ranges
for parameters two and three.
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5 OPENCL IMPLEMENTATION
Profiling of the targeted experiment design code revealed that the
biggest computational burden resided in the computation of dista-
nces between the particles (even in the fully vectorised case).
However, since this computation is the same for a large number
of particles, this could straightforwardly be outsourced to hardware
designed for parallel processing. For the OpenCL implementation
of the sampling based approach a MEX file was written that compu-
tes a single estimated variance reduction. The sequence of samples
is stored in global memory, while all the computations are perfor-
med using local registers. In order to avoid the overhead of having
to build the OpenCL code into GPU runnable binaries at each point,
we return the binary code coming from the graphics driver back to
MATLAB, so that it can be used as an input in subsequent calls to
the function. This approach gave us considerable speedups even on
modest graphics hardware (see Figure 12).
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Fig. 12. Comparison of implementation of vectorised MATLAB versus
OpenCL
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