Supplementary Figures and Tables

Figure Legends

Figure A. H-D exchange time course studies of intact proenkephalin (PE) and individual peptides derived from PE.

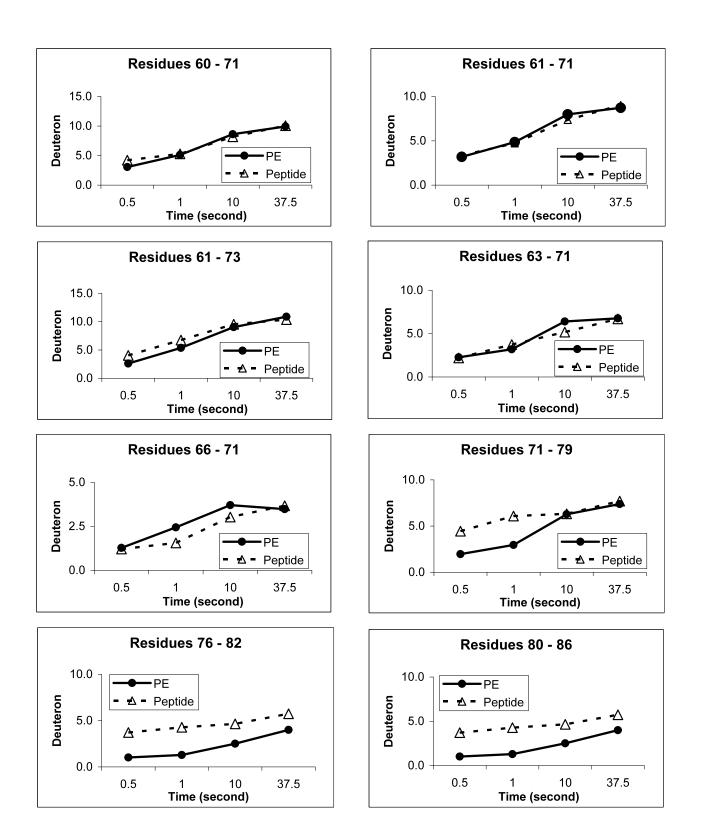
H-D exchange data for DXMS studies of intact PE protein (solid lines) and of peptides (dotted lines) derived from PE (by pepsin) are plotted for subdomains indicated by the amino acid numbers provided at the top of each graph. The graphs compare the number of deuterons incorporated into each peptide, y-axis (shown for +1 charge state of peptides, and for +2 charge state if it was the only charge state observed) at different times of incubation in D_2O buffer for acquisition of H-D exchange data. The standard deviation of deuterium incorporation measured in replicate determinations was typically less than 5% of the mean, as reported (49, 50) These plots show similarities and differences in deuteration exchange levels for peptide amide hydrogens at specific regions in intact PE, which maybe influenced by tertiary interactions, and PE-derived peptides, which only have intrinsic interactions of the primary peptide structure.

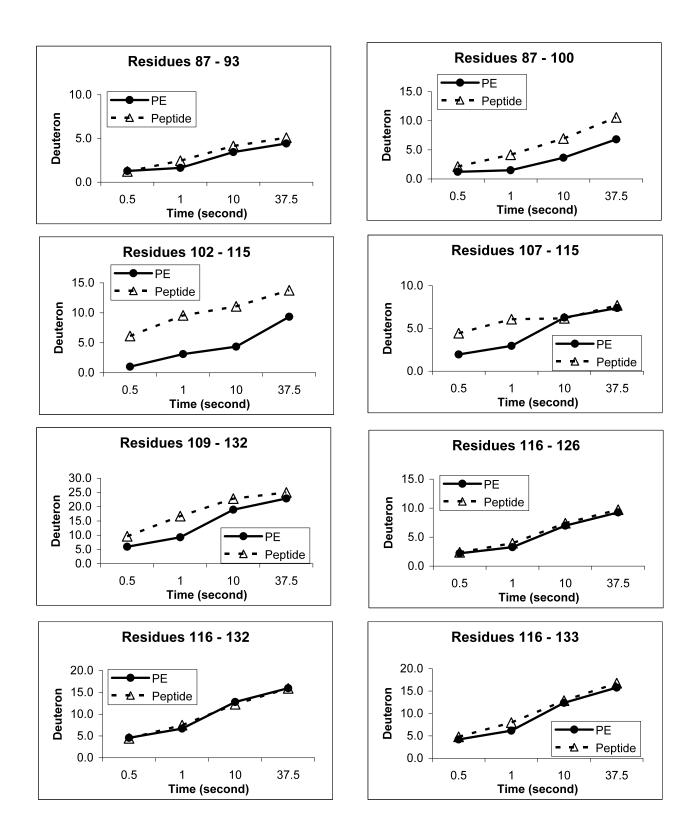
Figure B. H-D exchange of intact PE and peptides derived from PE at cleavage site domains.

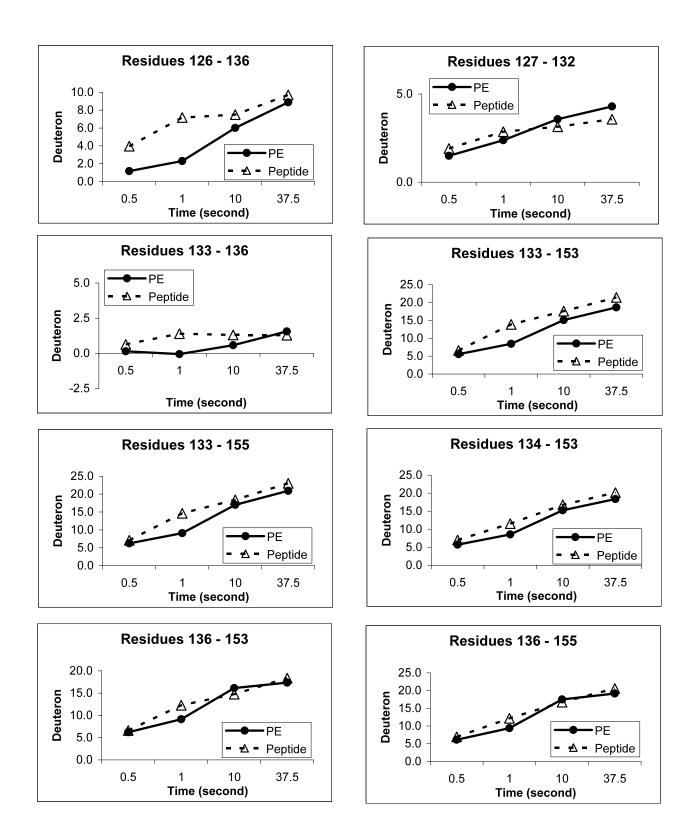
Comparison of relative H-D exchange rates at the twelve dibasic residue cleavage sites of intact PE, and peptides derived from, are illustrated at 1 second time point. More limited deuteration of intact PE is observed for the 12 cleavage site domains, compared to peptides derived from PE.

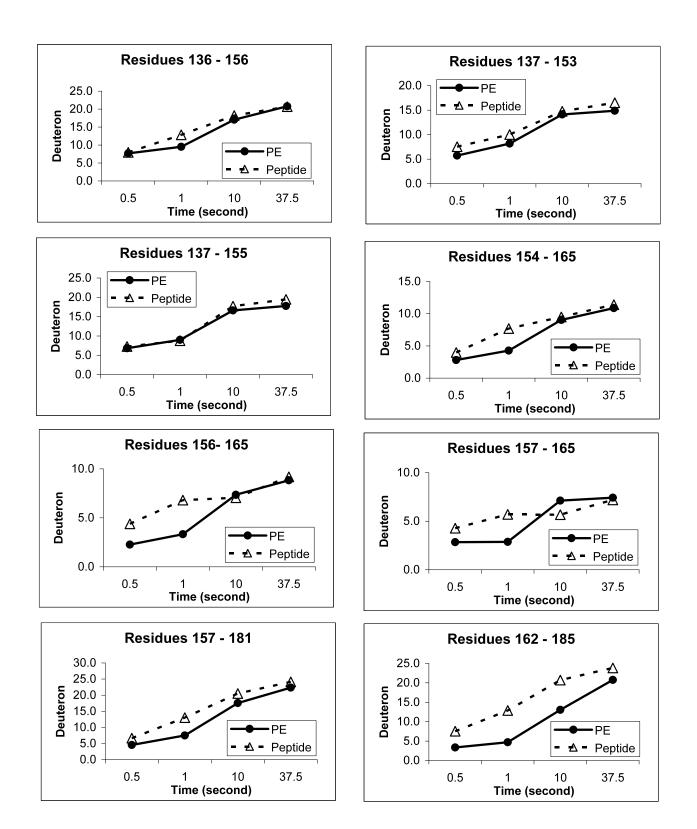
Table Legends

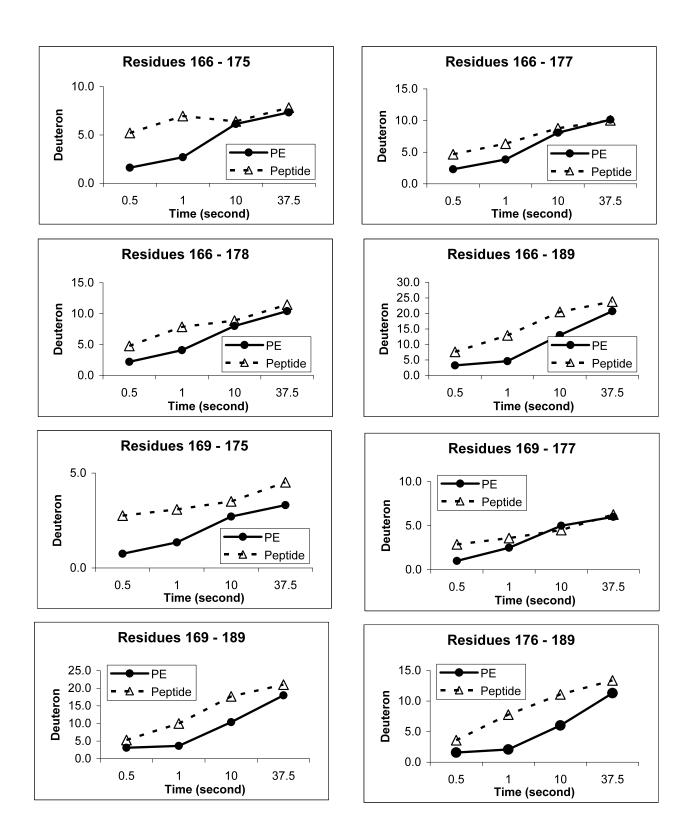
Table A. Charge states of peptides in the comparison of intact PE and peptides derived from PE in DXMS experiments.

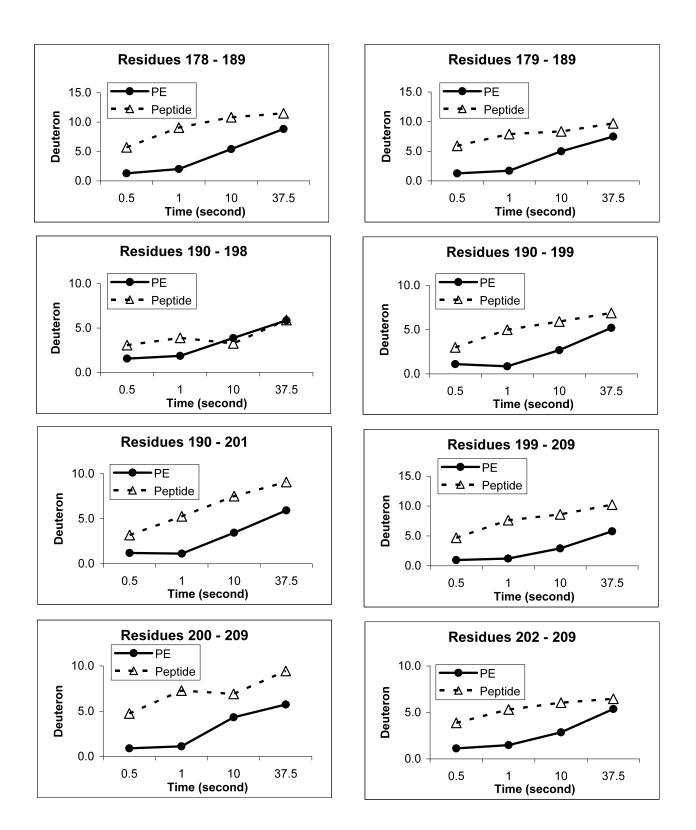

Peptides in DXMS analyses of figures 3 and 4 are listed, indicating the charge states observed in LC-MS analyses. The relative deuteration of these peptides of intact PE and for PE-derived peptides are plotted in supplemental Figure A, in time-course experiments. The relative deuteration of peptides at +1 or +2 charge states were identical. Therefore, plots of relative deuteration utilized peptides at +1 charge state, except in the case where only the +2 charge state was observed and utilized for time course plots of Figure A.

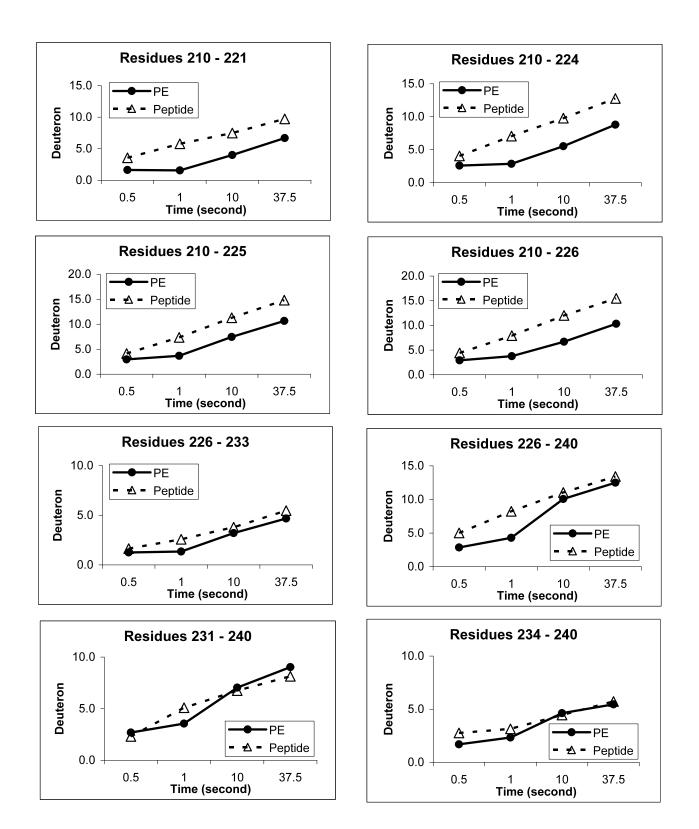

Table B. Peptides that span cleavage sites of PE.


Peptides spanning the twelve cleavage sites of PE are listed. For each of the cleavages sites #1-12, the location of the dibasic cleavage sites are shown by the residues numbers. Peptides spanning each of these cleavate sites are listed, including their observed charged states. The relative deuteration of these peptides (averages) were plotted in Figure 5 for comparison of their relative accessibilities to the aqueous environment.




Supplemental Figure A. H-D Exchange Time-Course of Intact PE and Peptides Derived from PE





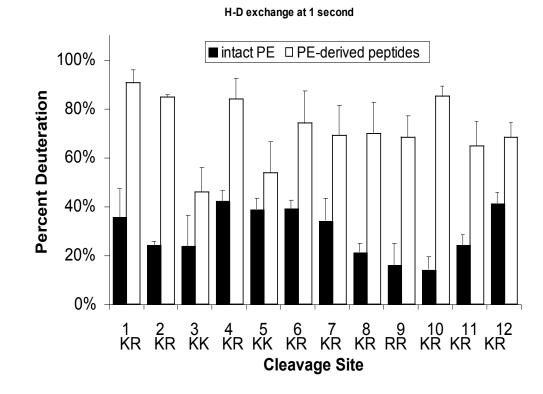


Figure B H-D Exchange of Intact PE and Peptides Derived from PE at Cleavage Site Domains

Supplemental Table A Charge States of Peptides in the Comparison of intact PE and Peptides Derived from PE in DXMS Experiments

Peptide			Peptide				Peptide				
Start	End	Charge	Start	End	Charge		Start	End	Charge		
45	59	+1	109	132	+2		169	177	+2		
45	59	+2	116	126	+2		169	189	+2		
45	60	+2	116	132	+2		176	189	+1		
45	62	+2	116	133	+2		176	189	+2		
46	60	+1	126	136	+1		178	189	+2		
46	60	+2	126	136	+2		179	189	+1		
47	60	+1	127	132	+1		179	189	+2		
47	60	+2	133	136	+1		190	198	+1		
48	54	+1	133	153	+2		190	198	+2		
48	54	+2	133	155	+2		190	199	+2		
48	60	+1	134	153	+2		190	201	+2		
48	60	+2	136	153	+2		199	209	+1		
59	71	+2	136	155	+2		199	209	+2		
60	71	+1	136	156	+2		200	209	+1		
60	71	+2	137	153	+2		200	209	+2		
61	71	+1	137	155	+2		202	209	+1		
61	71	+2	154	165	+1		202	209	+2		
61	73	+2	154	165	+2		210	221	+1		
63	71	+1	156	165	+1		210	221	+2		
63	71	+2	156	165	+2		210	224	+2		
66	71	+1	157	165	+2		210	225	+1		
71	79	+1	157	181	+2		210	225	+2		
71	79	+2	162	185	+2		210	226	+2		
76	82	+1	162	185	+3		226	233	+2		
76	82	+2	166	175	+1		226	240	+1		
80	86	+1	166	175	+2		226	240	+2		
80	86	+2	166	177	+2		231	240	+1		
87	93	+1	166	178	+2		234	240	+1		
87	100	+2	166	189	+2		234	240	+2		
102	115	+2	166	189	+3						
107	115	+1	169	175	+1						
107	115	+2	169	175	+2						

Supplemental Table B. Peptides Spanning PE Cleavage Sites

		Intact	PE-derived			Intact	PE-derived			Intact	PE-derived
Cleavage site		Protein	Peptide	Cleavage site		Protein	Peptide	Cleavage site		Protein	Peptide
#1	74-75	61-79 (+2)	71-79 (+1)	#7	170-171	156-175 (+2)	157-181 (+2)	#9	191-192	190-198 (+1)	190-198 (+1)
		71-79 (+1)	71-79 (+2)			156-175 (+3)	162-185 (+2)			190-198 (+2)	190-198 (+2)
		71-79 (+2)				157-165 (+2)	162-185 (+3)			190-199 (+2)	190-199 (+2)
		72-86 (+2)				157-181 (+2)	166-175 (+1)			190-201 (+2)	190-201 (+2)
#2	81-82	72-86 (+2)	76-82 (+1)			157-181 (+3)	166-175 (+2)			190-209 (+2)	
		76-82 (+1)	76-82 (+2)			162-185 (+2)	166-177 (+2)			190-209 (+3)	
		76-82 (+2)	80-86 (+1)			162-185 (+3)	166-178 (+2)	#10	204-205	190-209 (+2)	199-209 (+1)
		80-86 (+1)	80-86 (+2)			166-175 (+1)	166-189 (+2)			190-209 (+3)	199-209 (+2)
		80-86 (+2)				166-175 (+2)	166-189 (+3)			199-209 (+1)	199-210 (+2)
#3	88-89	87-93 (+1)	87-93			166-177 (+2)	169-175 (+1)			199-209 (+2)	200-209 (+1)
		87-100 (+2)	87-97 (+1)			166-178 (+2)	169-175 (+2)			200-209 (+1)	200-209 (+2)
			87-97 (+2)			166-189 (+2)	169-177 (+2)			200-209 (+2)	202-209 (+1)
			87-100 (+1)			166-189 (+3)	169-189 (+2)			202-209 (+1)	202-209 (+2)
			87-100 (+2)			169-175 (+1)	169-189 (+3)			202-209 (+2)	
			87-108			169-175 (+2)		#11	211-212	210-221 (+1)	210-217 (+1)
#4	110-111	97-120 (+2)	102-115 (+2)			169-177 (+2)				210-221 (+2)	210-217 (+2)
		102-115 (+2)	107-115 (+1)			169-189 (+2)				210-224 (+2)	210-221 (+1)
		107-115 (+1)	107-115 (+2)	#8	184-185	162-185 (+2)	162-185 (+2)			210-225 (+1)	210-221 (+2)
		107-115 (+2)	109-132 (+2)			162-185 (+3)	162-185 (+3)			210-225 (+2)	210-224 (+2)
		109-132 (+2)				166-189 (+2)	166-189 (+2)			210-226 (+2)	210-225 (+1)
#5	117-118	109-132 (+2)	109-132 (+2)			166-189 (+3)	166-189 (+3)				210-225 (+2)
		116-126 (+2)	116-126 (+2)			169-189 (+2)	169-189 (+2)				210-226 (+2)
		116-132 (+2)	116-132 (+1)			176-189 (+1)	169-189 (+3)	#12	235-236	218-242 (+2)	226-240 (+1)
		116-133 (+2)	116-132 (+2)			176-189 (+2)	176-189 (+1)			226-240 (+1)	226-240 (+2)
		116-153 (+3)	116-133 (+2)			178-189 (+2)	176-189 (+2)			226-240 (+2)	226-240 (+3)
#6	160-161	133-165 (+3)	154-165 (+1)			179-189 (+1)	176-189 (+3)			231-240 (+1)	231-240 (+1)
		154-165 (+1)	154-165 (+2)			179-189 (+2)	178-189 (+2)			234-240 (+1)	234-240 (+1)
		154-165 (+2)	156-165 (+1)			182-189 (+1)	179-189 (+1)			234-240 (+2)	234-240 (+2)
		156-165 (+1)	156-165 (+2)				179-189 (+2)			•	
			157-165 (+1)				· · · · · ·				
			157-165 (+2)								
			157-181 (+2)								
		157-165 (+2)	158-165 (+1)								
		157-181 (+2)	158-165 (+2)								
		157-181 (+3)									