### Supplementary Data

#### Hydrolysis of the Fluorogenic Peptides

suc-LLVY-MCA was utilized as the standard peptide to assess the chymotrypsin-like activity of the core. 20SPT ( $0.5-3 \mu g$ ) was incubated at 37°C in 20 mM Tris/HCl, pH 7.5 buffer. Incubation was initiated by the addition of 100  $\mu$ M of suc-LLVY-AMC. Fluorescence emission was recorded at 430 nm (excitation at 365 nm). The measurement of 20SPT activity using the fluoropeptide suc-LLVY-AMC was established by generating a curve at increasing proteasomal concentrations. We monitored the fluorescence signal every 2 min for 45 min and used the data in the linear range. The results were compared to the fluoroprobe (AMC) standard curve to ensure that the data fit into the initial rates in which no more than 5% of the substrate is consumed.

## Two-dimensional Gel Electrophoresis (2-DE) and In-gel Digestion

The His-tagged 20SPT was isolated as described in Materials and Methods. Cell protein extraction and proteasome purification were carried out in 50 mM Tris-HCl pH 7.5 buffer containing 500 mM NaCl, 5 mM MgCl<sub>2</sub>, and 20 mM imidazole. Final preparations were passed through a PD10-desalting column (GE Healthcare) and eluted in 10 mM Tris-HCl pH 7.5 buffer. Samples were concentrated in a 100 kDa cut-off microcon spin filter (Millipore) to achieve desired concentration  $(2-3 \mu g/\mu L)$ . Prior to IPG strips rehydration, final preparations (100–150  $\mu$ g) were mixed up with thiourea rehydration solution (7 M urea, 2 M thiourea, 2 % [w/v] CHAPS, 0.5 % IPG buffer, pH 4-7, 0.002% bromophenol blue) to a final volume of 340  $\mu$ L. Eighteen-centimeter IPG strips (pH 4–7) were rehydrated for 16 h at room temperature. IEF was conducted in a IPGphor 3 IEF system (GE Healthcare) according to the voltage gradient table below:

| Mode                                                                       | Voltage                                 | Vh accumulation                | Time                       |                     |
|----------------------------------------------------------------------------|-----------------------------------------|--------------------------------|----------------------------|---------------------|
| <ol> <li>Step</li> <li>Gradient</li> <li>Gradient</li> <li>Step</li> </ol> | 500 V<br>1000 V<br>10,000 V<br>10,000 V | 500<br>800<br>16,500<br>13,700 | ~1h<br>~1h<br>~3h<br>~1.5h | Total<br>31,500 V/ł |

The second dimension was performed in 12.5% SDS-PAGE, with the vertical Ettan-DALTsix Electrophoresis System (GE Healthcare). The gels were run at constant current (15 mA) for 45 min. Next, the current was increased to 45 mA and kept constant until the end of the run. Protein spots were visualized by Coomassie Brilliant Blue R-250 staining. Selected spots were excised and destained. Proteins were in-gel digested with Trypsin Gold (Promega, Mass Spectrometry Grade), according to the protocol provided by Promega.

# MALDI–TOF-MS Fingerprinting of the Proteasome Subunits

The mass spectrometry identifications of the proteasomal subunits isolated by 2-DE were performed using an Ettan MALDI-TOF system (Amersham Biosciences). Analyses of the tryptic digests of each spot were performed in reflectron mode with positive ionization at an acceleration voltage of 20 kV. The samples for MS analysis were spotted onto a MALDI slide, dried and covered with α-cyano-4-hydroxycinnamic acid (CHCA, saturated with 50% acetonitrile, 0.1% trifluoroacetic acid). The samples were analyzed by the Ettan Maldi Software and the final spectrum contained the sum of 200 accumulated spectra. For accessing the quality of the mass list, samples were applied in duplicate and utilized to confirm the presence of a given mass. Extracted mass measurements contained a signal to noise ratio higher than 3 and spectra resolution from 5000 to 8000 to assess monoisotopic distribution. The final spectrum contained the sum of the accumulated 200 spectra. The equipment was previously calibrated with standard peptides (Angio II  $[M + H]^+$ 1046.54 and P14R  $[M + H]^+$  1533.86). The peptide mass fingerprint analysis was performed using the Mascot Server 2.2 software (Matrix Science, UK), and the search parameters were: SwissProt 51.6 database, Saccharomyces cerevisiae taxon, trypsin enzyme, methionine oxidation as variable modification, peptide charge state 1<sup>+</sup>, one missed cleavage, and peptide mass tolerance of 0.25 Da. When present, masses of known contaminants (human keratin and trypsin autolysis peptides) were removed from the analysis.

#### SAXS Analysis of Proteasomal Redox Forms

The measured scattering data of both nPT-SG and PT-SH samples are shown in Supplementary Fig. S6. The scattering intensity is displayed as a function of q ( $q = 4\pi \sin\theta/\lambda$ , where  $\lambda$  is the radiation wavelength and  $2\theta$  is the scattering angle), the modulus of the reciprocal space momentum transfer vector. As the first analysis, we performed an independent modeling approach, using the indirect Fourier transformation (IFT) introduced by Glatter (2) in a slightly different implementation (10, 14). From this calculation, it is possible to obtain the pair distance distribution curve p(r) which provides real space information of particles in solution.

For both samples, the IFT fit provided the indication that the particles have an elongated conformation with maximum dimension of 230 Å (nPT-SG) and 200 Å (PT-SH). Also, the nPT-SG radius of gyration obtained was  $65 \pm 2$  Å and  $62 \pm 1$  Å in the case of PT-SH samples. The decreased radius of gyration might be explained by the differences in the p(r) curves. In p(r) curves from cylindrical particles, the point of inflexion after the maximum of the curve is a rough indication of the particle diameter. This indicates that 20SPT deglutathiolation induced a decrease on the particle diameter.

In order to go one step further on the data modeling, data was adjusted using a form factor of a hollow cylinder, with outer radius  $R_{out}$ , inner radius  $R_{inv}$  and length *L*. The form factor used in the modeling is given by

$$I_{1}(q) = \int_{0}^{\pi/2} \left[ \frac{V(R_{\text{out}})F_{\text{cyl}}(q, R_{\text{out}})\exp\left(-\frac{q^{2}\sigma^{2}}{2}\right) - V(R_{\text{in}})F_{\text{cyl}}(q, R_{\text{in}})}{V(R_{\text{out}}) - V(R_{\text{in}})} \right]^{2} \sin \alpha d\alpha$$

Where,

$$F_{\rm cyl}(R,L,\alpha) = \frac{2J_1(qR\,\sin\,\alpha)}{qR\,\sin\,\alpha} \frac{\sin(qL\,\cos\,\alpha/2)}{qL\,\cos\,\alpha/2}$$

$$V(R) = \pi R^2 L$$

The Gaussian term  $\exp(-q^2\sigma^2/2)$  provides a diffuse interface for the outer diameter of the cylinder. As will be shown below, it can be seen from the known 3D structure of yeast proteasome (pdb entry 3d29) the presence of several helices sticking out of the surface and therefore this diffuse interface might mimic this effect. The fit is shown in Supplementary Fig. S7.

The modeling using the theoretical form factor supported the results obtained by the IFT analysis indicating that proteasomal deglutathiolation decreases the outer diameter of the cylinder. Also, the fitting procedure indicated that the inner radius of the PT-SH presents an important decrease, almost closing completely. These results strongly indicate that proteasomal deglutathiolation induces conformational changes that decrease outer and inner radius closing the gate.

As an additional step of the data analysis, the scattering data were compared with available atomic resolution structure (6) (pdb entry 3d29). Two views of the protein structure are shown in Supplementary Figs. S8 and S9. The figures were generated using software MolMol (8) and Massha (7).



**SUPPLEMENTARY FIG. S1.** Protein incubation with nPT-SG. The image shown is a representative SDS-PAGE of  $15-\mu$ g protein samples incubated for 3 h at 30°C in the presence (+) or absence (-) of  $5\mu$ g of nPT-SG: cytochrome c (CytC), nonoxidized albumin (BSA), and ovalbumin (Ova). Casein, utilized as a model of unstructured protein, was incubated for 10 min with the nPT-SG. After incubation, the samples were filtered through YM-100 microfilters (Millipore) to remove the 20SPT, and the filtrates were applied to a 15% SDS-PAGE.



**SUPPLEMENTARY FIG. S2. 20S proteasomal gating. (A)** Representative images obtained by transmission electron microscopy of nPT-SG exhibiting both closed and open conformation. **(B)** PT-SH samples analyzed immediately after treatment with 20 mM DTT for 30 min followed by washing procedure to eliminate DTT, as described in Materials and Methods. Combined conformations (open and closed) are highlighted by squares and amplified, as seen.



SUPPLEMENTARY FIG. S3. Two-dimensional electrophoresis of the 20S proteasome (20SPT) from *S. cerevisiae*. The 20SPT ( $150 \mu g$ ) purified from yeast *S. cerevisiae* was isoelectric focused on IPG strips (pH range 4–7) followed by 12.5% SDS-PAGE and Coomassie Brilliant Blue G-250 staining. The labeled subunits were identified by Maldi-TOF fingerprinting analysis after in-gel tryptic digestion using Mascot software (Matrix Science) as the search engine. The nicotinamidase Pnc1 was co-purified and identified by MS fingerprinting.

The structure shown in Supplementary Fig. S8 has a cylinder-like shape and the overall dimensions can be extracted from the panel shown in Supplementary Fig. S10: cylinder height = 150 Å, outer diameter = 110 Å, and inner diameter = 50 Å.

Taking the comparison of the theoretical intensity calculated from structure shown in Supplementary Fig. S8 together with experimental data, we obtained the fit given in Supplementary Fig. S10. The theoretical intensity from the atomic coordinates was performed using program CRYSOL (16). As can be seen from the fit, the proteasome is reasonably described by the atomic resolution model, while there is a larger discrepancy in the data obtained from PT-SH samples.

SUPPLEMENTARY FIG. S4. S-glutathiolated Cys residues in the 20SPT. (A) The sulfur atom of all S-glutathiolated residues is highlighted in yellow, indicating a5Cys221 solvent accessibility. (B) Proteasomal  $\alpha$  ring highlighting S-glutathiolated Cys residues identified through LC-ESI-Q-TOF analyses. Cys221 and Cys76 in the  $\alpha 5$  subunit were found glutathiolated in nPT-SG samples; the other Cys residues shown were found glutathiolated after the 10 mM GSH treatment of same samples. (C) An additional view of glutathione docking in the vicinity of  $\alpha$ 5Cys221 (green) modeled by Gold 4.1-Protein-Ligand Docking (Cambridge Crystallographic Data Centre). The proteasome is shown by cartoon representation, and glutathione is indicated by white sticks emphasizing the solvent accessibility of the protein thiol group (yellow). Proteasomal residues interacting with GSHcharged groups are shown as blue sticks. Distances between GSH-charged groups and lateral chains of proteasomal amino acids are also shown (Å).

The SAXS data indicated that proteasome samples in solution can be well described as short hollow cylinders. However, dimensions and characteristics of the 20SPT redox forms are remarkably different. The nPT-SG can be understood as a hollow cylinder in a reasonable agreement with the known atomic resolution structure of the proteasome. On the other hand, the PT-SH presents smaller cross section, indicating decreased outer radius. Also, the modeling indicated that the internal hole was almost completely closed after DTT treatment. The change in structure was also confirmed by comparison with the known atomic resolution structure discussed above.

These results are in agreement with the TEM data also presented in this work for both proteasomal redox conditions.



#### + Majority

Majority

Scerevisiae a5.pro Spombe a5.pro Athaliana a5.pro Dmelanogaster a5.pro Mmusculus a5.pro Btaurus a5.pro Hsapiens a5.pro

#### + Majority

Majority

Spombe a5

Spombe a5

Mmusculus a5

Dmelanogaster a5

Scerevisiae a5.pro Spombe a5.pro Athaliana a5.pro Dmelanogaster a5.pro Mmusculus a5.pro Btaurus a5.pro Hsapiens a5.pro

|                                                                                                 | ESPECIAL E OVEYA                                                                            |                                                                             |                                                                               |                                                                     |                                                                    |                                                                 | CAMSO                                     |                                 |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|---------------------------------|
| 10                                                                                              | 20                                                                                          | 30                                                                          | 40                                                                            | 50                                                                  | 60                                                                 | 70 Cys                                                          | s76 80                                    |                                 |
| MFLTRSEYDRGVST<br>MFMTRSEYDRGVNT<br>MFLTRTEYDRGVNT<br>MFLTRSEYDRGVNT<br>MFLTRSEYDRGVNT          | F SPEGRLF QVEYS<br>F SPEGRLF QVEYA<br>F SPEGRLF QVEYA<br>F SPEGRLF QVEYA<br>F SPEGRLF QVEYA | LEAI KLOSTA<br>I EAI KLOSTA<br>I EAI KLOSTA<br>I EAI KLOSTA<br>I EAI KLOSTA | ALGIATKEGV<br>ALGVKTKDAV<br>ALGVKTKEGV<br>ALGICTPEGV<br>ALGIQTSEGV            | VLGVEKRATS<br>VLGVEKRLTS<br>VLAVEKRITS<br>VLAVEKRITS<br>CLAVEKRITS  | PLLESDSIEK<br>PLMESHSVEK<br>PLLEPSSVEK<br>PLMVPSTVEK<br>PLMVPSSIEK | IVEIDRHIG<br>LFEIDSHIG<br>IMEIDDHIG<br>IVEVDKHIG<br>IVEIDAHIG   | CAMSG<br>CAISG<br>CAMSG<br>CATSG<br>CATSG | 80<br>80<br>80<br>80<br>80      |
| MFLTRSEYDRGVNT<br>MFLTRSEYDRGVNT                                                                | F SPEGRLF QVEYA<br>F SPEGRLF QVEYA                                                          | I EAI KLGSTA<br>I EAI KLGSTA                                                | AI GI QT <mark>S</mark> EGV<br>AI GI QT <mark>S</mark> EGV                    | CLAVEKRI TS<br>CLAVEKRI TS                                          | PLMEPSSIEK                                                         | (IVEIDAHIG<br>(IVEIDAHIG                                        | CAMSG<br>CAMSG                            | 80<br>80                        |
| PSGTEVQCDAKAL G                                                                                 | SGSEGAQSSLQEV                                                                               | XHKSMTLKEA                                                                  |                                                                               | WMEEKLNAT                                                           | NXELATVXPG                                                         | QNFHMFTKE                                                       | ELEEV                                     |                                 |
| 170                                                                                             | 180                                                                                         | 190                                                                         | 200                                                                           | 210                                                                 | 220                                                                | 230                                                             | 240                                       |                                 |
| PSGTF <mark>YRYN</mark> AKAIG<br>PSGT <mark>YFRYE</mark> AKAIG<br>PSGTFM <mark>QCN</mark> AKAIG | SGSEGAQAELLNE<br>SGSEPA <mark>KSELVKE</mark><br>SGSEGADSSLQEQ                               | WHSSLSLKEA<br>FHKDMTLEEA<br>FNKDLSLQEA                                      | ELLVLKILKO<br>EVLILKVLRO<br>ETIAVSILKO                                        | QVMEEKLDEN<br>QVMEEKLDSK<br>QVMEEK <mark>VTPN</mark>                | NAQLSCITKQ<br>NVQLAKVTAE<br>NVDIAKVAP-                             | DGEKI YDNEI<br>GGEHI YNDEI<br>- AYHLYTPQ                        | KTABL 2<br>Mada 2<br>VBAV 2               | 239<br>238<br>233               |
| PSGTEV <mark>GHG</mark> AKAIG<br>PSGTEVQCDARAIG<br>PSGTEVQCDARAIG<br>PSGTEVQCDARAIG             | SGSEGA Q <mark>QNL QDL</mark><br>SASEGA QSSL QEV<br>SASEGA QSSL QEV<br>SASEGA QSSL QEV      | FRPDLTLDEA<br>YHKSMTLKEA<br>YHKSMTLKEA<br>YHKSMTLKEA                        | I <mark>DI SLNT</mark> LKO<br>I KSSLI I LKO<br>I KSSLI I LKO<br>I KSSLI I LKO | QVMEEKLN <mark>S</mark> T<br>QVMEEKLNAT<br>QVMEEKLNAT<br>QVMEEKLNAT | NVEVNTMTKE<br>NIELATVOPG<br>NIELATVOPG<br>NIELATVOPG               | RE <mark>FY</mark> MFTKE<br>QNFHMFTKE<br>QNFHMFTKE<br>QNFHMFTKE | EVEQH<br>ELEEV<br>ELEEV<br>ELEEV          | 239<br>237<br>237<br>237<br>237 |
|                                                                                                 |                                                                                             |                                                                             |                                                                               |                                                                     | Cys221                                                             |                                                                 |                                           |                                 |

Btaurus a5 MFLTRSEYDRGVNTFSPEGRLFQVEYAIEAIKLGSTAIGIQTSEGVCLAVEKRITSPLME 60 Hsapiens a5 MFLTRSEYDRGVNTFSPEGRLFQVEYAIEAIKLASTAIGIQTSEGVCLAVEKRITSPLME 60 Mmusculus a5 MFLTRSEYDRGVNTFSPEGRLFQVEYAIEAIKLGSTAIGIQTSEGVCLAVEKRITSPLME 60 Dmelanogaster a5 MFLTRSEYDRGVNTFSPEGRLFQVEYAIEAIKLGSTAIGICTPEGVVLAVEKRITSPLMV 60 MFLTRTEYDRGVNTFSPEGRLFQVEYAIEAIKLGSTAIGVKTKEGVVLAVEKRITSPLLE 60 Athaliana a5 Scerevisiae\_Pup2 MFLTRSEYDRGVSTFSPEGRLFQVEYSLEAIKLGSTAIGIATKEGVVLGVEKRATSPLLE 60 Spombe\_a5 MFMTRSEYDRGVNTFSPEGRLFQVEYAIEAIKLGSTAIGVKTKDAVVLGVEKRLTSPLME 60 Cys76 Btaurus\_a5 PSSIEKIVEIDAHIGCAMSGLIADAKTLIDKARVETQNHWFTYNETMTVESVTQAVSNLA 120 Hsapiens a5 PSSIEKIVEIDAHIGCAMSGLIADAKTLIDKARVETQNHWFTYNETMTVESVTQAVSNLA 120 PSSIEKIVEIDAHIGCAMSGLIADAKTLIDKARVETQNHWFTYNETMTVESVTQAVSNLA 120 Mmusculus\_a5 Dmelanogaster\_a5 PSTVEKIVEVDKHIGCATSGLMADARTLIERARVECQNHWFVYNERMSIESCAQAVSTLA 120 Athaliana a5 PSSVEKIMEIDDHIGCAMSGLIADARTLVEHARVETQNHRFSYGEPMTVESTTQALCDLA 120 SDSIEKIVEIDRHIGCAMSGLTADARSMIEHARTAAVTHNLYYDEDINVESLTQSVCDLA 120 Scerevisiae\_Pup2 SHSVEKLFEIDSHIGCAISGLTADARTIIEHARVQTQNHRFTYDEPQGIESTTQSICDLA 120 . ::\*\*:.\*:\* \*\*\*\* \*\*\* \*\*\*:::::::\*\*. .\* : \*.\* :\*\* :\*::. \*\* Btaurus a5 LOFGEE-DAD-PGAMSRPFGVALLFGGVD-EKGPOLFHMDPSGTFVOCDARAIGSASEGA 177 Hsapiens\_a5 LQFGEE-DAD-PGAMSRPFGVALLFGGVD-EKGPQLFHMDPSGTFVQCDARAIGSASEGA 177 Mmusculus a5 LQFGEE-DAD-PGAMSRPFGVALLFGGVD-EKGPQLFHMDPSGTFVQCDARAIGSASEGA 177 Dmelanogaster\_a5 IQFGDSGDSDGAAAMSRPFGVAILFAGIE-AGQPQLWHMDPSGTFVGHGAKAIGSGSEGA 179 Athaliana a5 LRFGEG-EEE---SMSRPFGVSLLIAGHD-ENGPSLYYTDPSGTFWQCNAKAIGSGSEGA 175 Scerevisiae Pup2 LRFGEGASGE-ERLMSRPFGVALLIAGHDADDGYQLFHAEPSGTFYRYNAKAIGSGSEGA 179 LRFGEGEDGE-ERIMSRPFGVALLIAGID-EHGPQLYHSEPSGTYFRYEAKAIGSGSEPA 178 Spombe a5 \*\*\*\*\*\*::\*:.\* : \*:\*\*\*.\*\* ::\*\*: . : .\*:: :\*\*\*\*: Cys221 Btaurus a5 OSSLQEVYHKSMTLKEAIKSSLIILKQVMEEKLNATNIELATVQPGQNFHMFTKEELEEV 237 Hsapiens a5 QSSLQEVYHKSMTLKEAIKSSLIILKQVMEEKLNATNIELATVQPGQNFHMFTKEELEEV 237 QSSLQEVYHKSMTLKEAIKSSLIILKQVMEEKLNATNIELATVQPGQNFHMFTKEELEEV 237 Mmusculus a5 Dmelanogaster\_a5 QQNLQDLFRPDLTLDEAIDISLNTLKQVMEEKLNSTNVEVMTMTKEREFYMFTKEEVEQH 239 Athaliana a5 DSSLQEQFNKDLSLQEAETIAVSILKQVMEEKVTPNNVDIAKVAP--AYHLYTPQEVEAV 233 Scerevisiae\_Pup2 QAELLNEWHSSLTLKEAELLVLKILKQVMEEKLDENNAQLSCITKQDGFKIYDNEKTAEL 239 KSELVKEFHKDMTLEEAEVLILKVLRQVMEEKLDSKNVQLAKVTAEGGFHIYNDEEMADA 238 : \*:\*\*\*\*: .\* :: : . .\* . :. .::\*.\*\* : :: :: Btaurus a5 IKDI----- 241 Hsapiens a5 IKDI----- 241

**SUPPLEMENTARY FIG. S5.** Alignments of the primary sequences of the  $\alpha$ 5 and  $\alpha$ 7 20SPT subunits  $\alpha$ 5 (continued  $\rightarrow$ )

IKDI----- 241

IKNIA----- 244

+ Majority

Majority

Scerevisiae a7.pro

Mmusculus a3.pro

Dmelanogaster a7.pro

Spombe a7.pro

Athaliana a3.pro

Btaurus a3.pro Hsapiens a3.pro

MSSI GTGYDĻSASTFSPDGRVFQVEYAMKĄVENSSTAI GIRCKDGVVFGVEKLVXSKLYEPGSNKRIFNYDRHXGMAVAG 10 30 50 20 40 60 70 80 GTGYDLSNSVFSPDGR GTGYDLG-LFFSPDGR SPDGRNFQVEYA AVENGT 80 79 80 VFAVEKLI T I LALEKVVT **AVENAS** G DGV GT GY DL SVT TF SPDGRV GT GYDL SASOF SPDGRVF QL DYASKAVEKS GT GYDL SASTF SPDGRVF QVEYAMKAVENS 80 80 80 80 FTIEKN MA SPDGRVFQVEYAMKAVENSSTALGLE SPDGRVFQVEYAMKAVENSSTALGLE (DG) GTGYDLSASTR GVE **RVFQVEYAMKAVENSSTA** GI Cys42

|                   | Cys42                                                                           |     |
|-------------------|---------------------------------------------------------------------------------|-----|
| Btaurus a3        | MSSIGTGYDLSASTFSPDGRVFOVEYAMKAVENSSTAIGIRCKDGVVFGVEKLVLSKLYE                    | 60  |
| Hsapiens a3       | MSSIGTGYDLSASTFSPDGRVFOVEYAMKAVENSSTAIGIRCKDGVVFGVEKLVLSKLYE                    | 60  |
| Mmusculus a3      | MSSIGTCYDLSASTFSPDGRVFOVFYAMKAVENSSTAICIRCKDGVVFCVFKLVLSKLYF                    | 60  |
| Dmolanogastor a7  |                                                                                 | 60  |
| Athaliana a2      | MOTORIO DI SASO FOCOLO TEVA NA UNICO UNA CALA CALA CALA CALA CALA CALA CALA CA  | 60  |
| Achariana_as      | MSSIGICIDESVIIFSFDGRVFQIEIAARAVDNSGTVVGIRCHDGIVIGVERLIASRIML                    | 00  |
| Scerevisiae_Preiu | MTSIGTGIDLSNSVFSPDGRNFQVEIAVKAVENGTTSIGTKCNDGVVFAVEKLITSKLLV                    | 60  |
| Spombe_a/         | MSSIGTGYDLG-LFFSPDGRLFQAEYAYKAVENASTCIGIKCEDGVILALEKVVTSKLLK                    | 59  |
|                   | *::*******. ****** ** :** ***: * :**: :*.:::::**:: **:                          |     |
| Btaurue a3        | FCSNKDI ENUNDHUCMAVACI I ANADSI ANTADFFASNFDSNFCYNTDI KHI ANDVAMYV              | 120 |
| Heapiene a2       | ECONIZAL ENUMERICANA ALL'A DARCHA DINADEZA CINECTIVI E DIVITA DOVANYU           | 120 |
| hsapiens_as       | EGSNKKLENVDKRVGMAVAGLADAKSLADMAKEASNFKSNFGINIFLKRLADKVAMIV                      | 120 |
| Mmusculus_a3      | EGSNKRLFNVDRHVGMAVAGLLADAKSLADIAREEASNFRSNFGINIPLKHLADRVAMVV                    | 120 |
| Dmelanogaster_a/  | PDAGGRIFTIEKNIGMAVAGLVADGNFVADIARQEAANYRQQFEQAIPLKHLCHRVAGYV                    | 120 |
| Athaliana_a3      | PGSNRRIHSVHRHAGMAVAGLAADGRQIVARAKSEARSYESVYGDAVPVKELSERVASYV                    | 120 |
| Scerevisiae_Pre10 | PQKNVKIQVVDRHIGCVYSGLIPDGRHLVNRGREEAASFKKLYKTPIPIPAFADRLGQYV                    | 120 |
| Spombe_a7         | PRVNNRIGSVDRHIGIATTGFIPDGQHIVKRARDEATSWRDNYGSPIPGTVIADRLGNYV                    | 119 |
|                   | . :: :.:: * . :*: .* ::.** .: : :* :*:. **                                      |     |
| Ptourus 22        | UN VAL VENUEDECCEEMI CEVEUNDENOI VMI DECUEVEVUCENTEVADONNUMETEVI                | 100 |
| Beaurus_as        | IN THIS AVER GOOD AND AND AND AND AND AND AND AND AND AN                        | 100 |
| hsapiens_as       | TATILISAVEFIGOSPHLGSISVEDGAGLIMIDPSGVSVGCALGCALGCALGCALGCALGCALGCALGCALGCALGCAL | 100 |
| Mmusculus_as      | HAITLISAVRFGCSFMLGSISANDGAQLIMIDPSGVSIGIWGCAIGKAKQAAKTELEKL                     | 180 |
| Dmelanogaster_a/  | HAYTLYSAVRPFGLSIILASWDEVEGPQLYKIEPSGSSFGYFACASGKAKQLAKTEMEKL                    | 180 |
| Athaliana_a3      | HLCTLYWWLRPFGCGVILGGYDR-DGPQLYMIEPSGISYRYFGAAIGKGKQAAKTEIEKL                    | 179 |
| Scerevisiae_Pre10 | QAHTLYNSVRPFGVSTIFGGVDK-NGAHLYMLEPSGSYWGYKGAATGKGRQSAKAELEKL                    | 179 |
| Spombe_a7         | QLFTCYSSVRPFGVMSFVATYDS-EGPHLYMVEPNGVYWGYNGAAAGKGRQVARNELEKL                    | 178 |
|                   | : * * :**** : :*.:** ::*.* : ** **.:* *: *:***                                  |     |
| Btaurus a3        | OMKEMTCRDVVKEVAKIIYIVHDEVKDKAFELELSWVGE-ITNGRHEIVPKDVREEA                       | 236 |
| Hsapiens a3       | OMKEMTCRDIVKEVAKIIYIVHDEVKDKAFELELSWYGE-ITNGRHEIVPKDIREEA                       | 236 |
| Mmusculus a3      | OMKFMTCPDVVKFVAKITYTVHDFVKDKAFFIFISWVGF-ITKCPHFIVPKDTPFFA                       | 236 |
| Dmelanogaster a7  |                                                                                 | 235 |
| Dimeranogaster_a/ |                                                                                 | 235 |
| Athailana_as      | NLSEMICREGVIEVARIIIRLHDEARDRAFELEMSWICE-ESREHQRVPDDLLEEA                        | 235 |
| Scerevisiae_Preiu | VDHHPEGLSAREAVKQAAKIIILAHEDNKEKDFELEISWCSLSEINGLHKFVKGDLLQEA                    | 239 |
| Spombe_a/         | NFSSLKMKDAVKEAARILYATHDEENNKEHEIEMTWVGV-ETNGIHTPVPDELLQEA                       | 234 |
|                   | : : **:* *:: ::*:*: : * :: ::*                                                  |     |
| Btaurus a3        | EKYAKESLKEEDESDDDNM 255                                                         |     |
| Hsapiens a3       | EKYAKESIKEEDESDDDN                                                              |     |
| Mmusculus a3      | EKYAKESLKEEDE SDDDNM 255                                                        |     |
| Dmelanogaster a7  | RKAGDAANKDEDS DNETH 253                                                         |     |
| Athaliana a3      | KTAAKTALEEMDA                                                                   |     |
| Scorovision Pre10 |                                                                                 |     |
| Scerevisiae_rielu |                                                                                 |     |
| sponne_a/         | EATAKKIADGEEE DIAMQE 253                                                        |     |
|                   |                                                                                 |     |

SUPPLEMENTARY FIG. S5 (continued). Alignments were performed with the software MegAlign DNASTAR Lasergene 9 Core Suite and those of text format with the ClustalW2 - European Bioinformatics Institute (http://www.ebi.ac.uk/Tools/ msa/clustalw2/). Sequences were obtained from SGD (Saccharomyces Genome Database) and NCBI Protein Database.



SUPPLEMENTARY FIG. S6. Model fit of the SAXS data using indirect Fourier transformation (IFT). *Left:* Experimental data; nPT-SG (circles), PT-SH (triangles), IFT fit (solid lines). The curves were split for clarity. *Right:* Pair distance distribution functions; nPT-SG (solid line), PT-SH (dotted line).



**SUPPLEMENTARY FIG. S7.** Model fit of the SAXS data using the cylinder form factor. *Left:* Experimental data; nPT-SG (circles), PT-SH (triangles), theoretical fit (solid lines). The curves were split for clarity.



SUPPLEMENTARY FIG. S8. Representation of the structure 3d29 in two views, side and top.



SUPPLEMENTARY FIG. S9. Representation of the structure 3d29 on a grid panel to retrieve characteristic sizes.



q [Å-1]

SUPPLEMENTARY FIG. S10. Fitting of the experimental data with the theoretical intensity calculated from structure 3d29.

| Diameter (Å)    | Lenght (Å) | Pore (Å) | Species                  | Technique | Source       | Obs                                    |
|-----------------|------------|----------|--------------------------|-----------|--------------|----------------------------------------|
| 106             | 188        | 80       | Saccharomyces cerevisiae | SAXS      | Present work | Open – nPT-SG                          |
| 72              | 210        | 0-10     | S. cerevisiae            | SAXS      | Present work | Closed – PT-SH                         |
| 120             | 154        | 10       | S. cerevisiae            | Crystal   | (3)          |                                        |
| nd              | nd         | 9/20     | Termoplasma acidophilum  | Crystal   | (15)         | Closed/ Open                           |
| 113             | 148        | 13       | T. acidophilum           | Crystal   | (9)          | · 1                                    |
| 100-130         | 150-170    | nd       | S. pombe                 | AFM       | (11)         |                                        |
| 80-120          | 130-170    | nd       | S. cerevisiae            | AFM       | (13)         | Log phase <sup>a</sup>                 |
| 90-120          | 140-170    | nd       | S. pombe                 | AFM       | (12)         | Open – cylinder <sup>b</sup>           |
| 80-110          | 140-160    | nd       | S. pombe                 | AFM       | (12)         | Closed – barrel <sup>c</sup>           |
| 110             | 150        | nd       | T. acidophilum           | TEM       | (5)          |                                        |
| 120             | 170        | 40       | Anas platyrhynchos       | TEM       | (1)          |                                        |
| nd <sup>d</sup> | 210        |          | S. cerevisiae            | SAXS      | Present work | $\Delta N \alpha 3 \alpha 720 SPT^{e}$ |
| nd <sup>e</sup> | 230        |          | S. cerevisiae            | SAXS      | Present work | $\Delta N \alpha 3 \alpha 720 SPT^{f}$ |

SUPPLEMENTARY TABLE S1. 20SPT DIMENSIONS OBTAINED WITH DIFFERENT TECHNIQUES

<sup>a</sup>Proteasome purified from yeast cells in the log phase of growth. <sup>b,</sup>Proteasomes described with cylinder and barrel shapes, respectively.

<sup>d</sup>e<sup>A</sup>Although no change in the diameter between analyzed samples was predicted, we did not succeed to measure the dimension. <sup>e</sup>Proteasome purified from cells grown to stationary phase into YPD were treated with 20 mM DTT. <sup>f</sup>Same samples incubated with 1 mM GSH.

SAXS, small angle X-ray scattering; AFM, atomic force microscopy; TEM, transmission electron microscopy; nd, not determined.

Supplementary Table S2. Identification of the 20SPT Subunits by Peptide Mass Fingerprinting

| Subunit | Protein | Theoretical mass (Da) | Theoretical pI | Sequence coverage (%) | Matched peptides | MOWSE score |
|---------|---------|-----------------------|----------------|-----------------------|------------------|-------------|
| α1      | Scl1    | 28,001                | 6.17           | 42                    | 10               | 68          |
| α2      | Pre8    | 27,162                | 5.5            | 22                    | 5                | 62          |
| α3      | Pre9    | 28,714                | 4.91           | 69                    | 16               | 106         |
| α4      | Pre6    | 28,439                | 7.37           | 46                    | 7                | 74          |
| α5      | Pup2    | 28,617                | 4.49           | 52                    | 12               | 91          |
| α6      | Pre5    | 25,604                | 7.43           | 73                    | 12               | 114         |
| α7      | Pre10   | 31,536                | 4.9            | 22                    | 5                | 60          |
| β1      | Pre3    | 23,547                | 5.73           | 44                    | 8                | 66          |
| β2      | Pup1    | 28,268                | 6.6            | 14                    | 4                | 74          |
| β3      | Pup3    | 22,605                | 4.87           | 24                    | 4                | 59          |
| β4      | Pre1    | 22,516                | 6.15           | 29                    | 6                | 87          |
| β5      | Pre2    | 31,636                | 6.17           | 32                    | 8                | 89          |
| β6      | Pre7    | 26,871                | 5.99           | 50                    | 11               | 63          |
| β7      | Pre4    | 29,443                | 5.81           | 47                    | 8                | 86          |
| ,<br>P1 | Pnc1    | 24,993                | 6.23           | 40                    | 7                | 107         |

MALDI-TOF MS analyses of proteasomal subunits isolated by 2-DE PAGE followed by digestion with trypsin were performed using an Ettan MALDI-TOF instrument (Amersham Biosciences). Probability-based MOWSE scores were obtained using Mascot Server 2.2 software (Matrix Science, UK). Scores higher than 56 were statistically significant (p<0.05). In addition to the 14 proteasomal subunits, nicotinamidase Pnc1 was also identified.

| Cys               | Tryptic peptide sequence          | SH  | GSH | SOH | $SO_2$ |
|-------------------|-----------------------------------|-----|-----|-----|--------|
| α1                |                                   |     |     |     |        |
| C50               | GKDCTVVISOK                       | + + |     |     | +      |
| C50               | DCTVVISOK                         | +   |     |     |        |
| C74               | LLDPTTVSYIFCISR                   | +   |     |     |        |
| C114              | YGYDMPCDVLAK                      | + + |     |     |        |
| α4                |                                   |     |     |     |        |
| C32 <sup>a</sup>  | GTCAVGVK                          | + + |     |     |        |
| C41               | NCVVLGCER                         | + + |     |     |        |
| C46 <sup>a</sup>  | NCVVLGCER                         | +   |     |     |        |
| C191              | KEPPATVEECVK                      | + + |     |     |        |
| α5                |                                   |     |     |     |        |
| C76               | HIGCAMSGLTADAR                    | + + | + + |     | + +    |
| C117              | TAAVTHNLYYDEDINVESLTQSVCDLALR     | + + | +   |     | + +    |
| C221              | QVMEEKLDENNAQLSCITK               | +   | +   |     |        |
| C221              | LDENNAQLSCITK                     | + + | +   |     | +      |
| α6                |                                   |     |     |     |        |
| C66               | CDEHMGLSLAGLAPDAR                 | + + | +   |     |        |
| C92               | QQCNYSSLVFNR                      | + + |     |     |        |
| C113              | AGHLLCDK                          | +   |     |     |        |
| α7                |                                   |     |     |     |        |
| C42               | CNDGVVFAVEK                       | + + | +   |     | + +    |
| C76               | HIGCVYSGLIPDGR                    | + + | +   |     | +      |
| C219              | DFELEISWCSLSETNGLHKFVKGD          | +   |     |     |        |
| $\beta 1$         |                                   |     |     |     |        |
| C62               | IWCCR                             | +   |     |     |        |
| C63               | IWCCR                             | +   |     |     |        |
| C105              | ELCYENK                           | +   |     |     |        |
| C157              | LPYAIAGSGSTFIYGYCDK               | + + |     |     |        |
| β3 <sup>⊳</sup>   |                                   |     |     |     |        |
| C20               | DCVAIACDLR                        | +   |     |     | +      |
| $\beta 4^{D}$     |                                   |     |     |     |        |
| C164              | LCVQELEK                          | +   |     |     | +      |
| C164              | LCVQELEKR                         | +   |     |     |        |
| C219 <sup>a</sup> | DFELEISWCSLSETNGLHKFVKGD          | +   |     |     |        |
| β5                |                                   |     |     |     |        |
| C127 <sup>a</sup> | VKRVIEINPFLLGTMAGGAADCQFWET       | + + |     |     |        |
| C138 <sup>a</sup> | VKRVIEINPFLLGTMAGGAADCQFWETWLGSQC | + + |     |     |        |
| C177              | GAGLSMGTMICGYTR                   | +   |     |     |        |
| C203              | LKGDIFCVGSGQTFAYGVLDSNYK          | + + |     |     | + +    |
| β6                |                                   |     |     |     |        |
| C66               | YEPKVFDCGDNIVMSANGFAADGDALVK      | + + |     | +   | + +    |
| C155 <sup>a</sup> | EQCR                              | + + |     |     |        |

# Supplementary Table S3. The Redox Forms of 20SPT-Cys Residues in Preparations Obtained From Cells Grown to Stationary Phase in YPD

All 14 proteasomal subunits were identified on the 2-DE gel, as shown in Supplementary Fig. 1S (numbered spots). Those spots containing Cys residues were digested, followed by LC-Q-ToF-MS. Subunits  $\alpha 2$ ,  $\alpha 3$ , and  $\beta 7$  do not contain Cys. Seven Cys residues and their respective fragments distributed into  $\beta 2$  (C60, C62, C205, and C250) and  $\beta 3$  (C25, C129, and C150) subunits were not identified. Among the 35 Cys present in the mature form of the yeast 20SPT, 28 were identified in the present study. Thirty-six Cys in the 20S PT were deduced from the genomic sequence (www.yeastgenome.org). Only 35 of the 36 in the mature 20S PT were mentioned because the cleavage of the  $\beta 5$  subunit at G75 removes the Cys 68 (4). Other cleavages during 20S PT maturation, all reported for the  $\beta$  subunits, do not imply the removal of any Cys residue (4).

(+) indicates the redox state of Cys residues found in the fragments identified by LC-Q-ToF-MS analyses from tryptic fragments of samples obtained, as shown: **Red:** nPT-SG (20SPT purified from cells grown into YPD); **Green:** nPT-SG samples treated with 10 mM GSH (PT-SG). Subunits analyzed were:  $\alpha 1$ ,  $\alpha 4$ ,  $\alpha 5$ ,  $\alpha 6$ ,  $\alpha 7$ ,  $\beta 3$ , and  $\beta 5$ . In this set of experiments, the buffers utilized for cell lysis and during the entire proteasome purification procedure contained 20 mM IAA to alkylate reduced cysteines, avoiding their oxidation during sample manipulation.

<sup>a</sup>These fragments were identified only in the absence of iodoacetamide (IAA).

<sup>b</sup>These subunits were not analyzed in nPT-SG preparations.

LC-Q-ToF-MS, liquid chromatography-quadrupole-time of flight-mass spectrometry.

| SUPPLEMENTARY TABLE S4. CHYMOTRYPSIN-LIKE |
|-------------------------------------------|
| Proteasomal Activity by the Redox Forms   |
| of the 20SPT                              |

|                      | nPT-SG        | PT-SH            |  |
|----------------------|---------------|------------------|--|
| V <sub>max/min</sub> | $7.5 \pm 0.5$ | $10 \pm 0.1^{*}$ |  |

20S proteasomal preparations were incubated with the suc-LLVY-AMC substrate, and the fluorescence emission was recorded for 45 min. The results shown are expressed as the means  $\pm$  SD of  $V_{max}/$  min.

\* $p \le 0.0034$ .

#### References

- Coux O, Tanaka K, and Goldberg AL. Structure and functions of the 20S and 26S proteasomes. *Annu Rev Biochem* 65: 801–847, 1996.
- 2. Glatter O. A new method for the evaluation of small-angle scattering data. *J Appl Cryst* 10: 6, 1977.
- 3. Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, and Huber R. Structure of 20S proteasome from yeast at 2.4 A resolution. *Nature* 386: 463–471, 1997.
- Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf DH, and Huber R. The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. *Proc Natl Acad Sci U S A* 96: 10976–10983, 1999.
- Hegerl R, Pfeifer G, Puhler G, Dahlmann B, and Baumeister W. The three-dimensional structure of proteasomes from *Thermoplasma acidophilum* as determined by electron microscopy using random conical tilting. *FEBS Lett* 283: 117–121, 1991.
- Hines J, Groll M, Fahnestock M, and Crews CM. Proteasome inhibition by fellutamide B induces nerve growth factor synthesis. *Chem Biol* 15: 501–512, 2008.

- Konarev PV, Petoukhov MV, and Svergun DI. MASSHA—a graphics system for rigid-body modelling of macromolecular complexes against solution scattering data. J Appl Cryst 34: 5, 2001.
- Koradi R, Billeter M, and Wuthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14: 51–55, 29–32, 1996.
- Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, and Huber R. Crystal structure of the 20S proteasome from the archaeon *T. acidophilum* at 3.4 A resolution. *Science* 268: 533– 539, 1995.
- Oliveira CL, Behrens MA, Pedersen JS, Erlacher K, and Otzen D. A SAXS study of glucagon fibrillation. *J Mol Biol* 387: 147–161, 2009.
- Osmulski PA and Gaczynska M. Atomic force microscopy reveals two conformations of the 20 S proteasome from fission yeast. J Biol Chem 275: 13171–13174, 2000.
- 12. Osmulski PA and Gaczynska M. Nanoenzymology of the 20S proteasome: proteasomal actions are controlled by the allosteric transition. *Biochemistry* 41: 7047–7053, 2002.
- Osmulski PA, Hochstrasser M, and Gaczynska M. A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the alpha-ring channel. *Structure* 17: 1137–1147, 2009.
- 14. Pedersen JS, Hansen S, and Bauer R. The aggregation behavior of zinc-free insulin studied by small-angle neutron scattering. *Eur Biophys J* 22: 379–389, 1994.
- Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, and Cheng Y. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. *Mol Cell* 30: 360– 368, 2008.
- Svergun DI, Barberato C, and Koch, MHJ. CRYSOL—a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. *J Appl Cryst* 28: 5, 1995.