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1 The mathematical model

Differential geometry of the cell cylinder and periplas-

mic flagella

In this Supplemental Material section, we derive the mathematical model
for the unstressed shape of B. burgdorferi. We begin by defining the local
geometry of the cell cylinder (CC) and the periplasmic flagella (PF). Con-
straining the flagella to reside at the surface of the cell cylinder provides a
relationship between the centerline coordinates of the CC and the PF. We
use linear elasticity to define the elastic restoring torques and forces for the
CC and the PF. Force and torque balance then leads to a coupled system
of ordinary differential equations (ODEs) that determines the morphology of
the CC and the PF.

Since the CC and the PF are much longer than they are wide, we treat
them both as filamentary objects with circular cross-sections. There are
typically between 7 and 11 PFs per end in B. burgdorferi (1). For simplicity,
we will treat these flagella as a single filament. We define the centerline of
the CC as rc(s), where s is the arclength along the centerline (Figure 1).
Likewise, rf(sf) is the centerline position of the PF, where sf is the arclength
along the flagellar filament (Figure 1).

At all points along the centerline of the CC, we define an orthonormal
triad {ê1, ê2, ê3}, with ê3 = ∂rc/∂s the tangent vector of the CC. The unit
vectors ê1 and ê2 point to material points on the surface of the cell cylinder
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Figure 1: Schematic diagram showing a B. burgdorferi cell. The cell cylinder is
grey and the periplasmic flagella are treated as a single helical filament, shown in
black. The centerline of the cell cylinder, described by the vector rc, is depicted
by the dashed line. rf is the vector describing the centerline of the periplasmic
flagella. (Inset) A close up view of a short segment of the cell. ê1 and ê2 are unit
vectors that point to the surface of the cell cylinder. The flagella are located at a
point ap̂1 from the centerline. α is the angle from ê1 to p̂1.

(Figure 1). As the CC bends and twists, the positions of these material
points change, causing the material frame to rotate (2):

∂êi

∂s
= Ω × êi (S1)

where i = 1, 2, 3. The vector Ω = {Ω1, Ω2, Ω3} is the strain vector, which
describes the bending and twisting strain at a given point. Ω1 and Ω2 give
the curvature of the CC and Ω3 is the twist of the CC about the tangent
vector.
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Since the PF lie at the surface of the CC, we can describe the position of
the PF in terms of rc (Figure 1),

rf = rc + a cos αê1 + a sin αê2 = rc + ap̂1 , (S2)

where a is the radius of the CC and α is the angular position of the PF with
respect to ê1. It is useful to define the unit vector p̂1 that points from the
centerline of the CC to the PF. The tangent vector of the PF is ǫ̂3 = ∂rf/∂sf,
which can be related to the CC variables using Eqs. S1 & S2,

ǫ̂3 =
1√
g

∂rf

∂s

=
1√
g

(

−a

(

Ω3 +
∂α

∂s

)

sin αê1 + a

(

Ω3 +
∂α

∂s

)

cos αê2

+ (1 − aΩ2 cos α + aΩ1 sin α) ê3) , (S3)

where
√

g is the ratio between a differential arclength along the PF to a
differential arclength along the CC; i.e.,

g = (1 − aΩ2 cos α + aΩ1 sin α)2 + a2

(

Ω3 +
∂α

∂s

)2

. (S4)

A second orthonormal triad can be defined as {p̂1, p̂2, ǫ̂3}, where p̂2 = ǫ̂3×p̂1.
This frame describes rotation of the PF about the centerline of the CC.

An orthonormal triad for the PF is {ǫ̂1, ǫ̂2, ǫ̂3}. ǫ̂1 and ǫ̂2 are related to
p̂1 and p̂2 by

ǫ̂1 = cos βp̂1 + sin βp̂2 (S5)

ǫ̂2 = − sin βp̂1 + cos βp̂2 . (S6)

β is the angle between p̂1 and ǫ̂1: It is the PF analog to the CC angle α. A
strain vector for the PF, ω describes the rotation of this triad,

∂ǫ̂i

∂sf

= ω × ǫ̂i (S7)

At this point, it is convenient to work in terms of a rotated CC frame,
using the rotated curvatures

Υ = Ω2 cos α − Ω1 sin α (S8)

Ξ = Ω2 sin α + Ω2 cos α . (S9)
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Using relations that can be derived from Eq. S7,

ω1 = −ǫ̂2 ·
∂ǫ̂3

∂sf

(S10)

ω2 = ǫ̂1 ·
∂ǫ̂3

∂sf

(S11)

ω3 = ǫ̂2 ·
∂ǫ̂1

∂sf

, (S12)

we can derive the curvatures and twist of the PF in terms of Ω, α, and β,

ω1 = −̟1 sin β − ̟2 cos β

ω2 = −̟1 cos β + ̟2 sin β

ω3 =
1√
g

∂β

∂s
+

1

g

∂α′

∂s
(S13)

and we have defined

∂α′

∂s
=

∂α

∂s
+ Ω3 , (S14)

̟1 =
1

g

(

a

(

∂α′

∂s

)2

− (1 − aΥ)Υ

)

, (S15)

̟2 =
1

g3/2

(

a
∂2α′

∂s2
(1 − aΥ) − gΞ + a2∂Υ

∂s

∂α′

∂s

)

. (S16)

The forces and torques

When the flagella are not present, the CC has a straight, rod-shaped mor-
phology (3–5). Purified flagella are helical with a helix radius R = 0.14 µm
and pitch P = 1.48 µm (6). Therefore, we treat the CC as a straight filament
with no preferred curvature or twist. Using the empirically determined helix
radius and pitch, the preferred curvature and torsion of the PF are

κ0 =
R

R2 + (P/2π)2
= 1.86 µm−1 (S17)

τ0 =
(P/2π)

R2 + (P/2π)2
= 3.14 µm−1 (S18)
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The internal elastic stresses of the CC exert a force Fc and a moment Mc

on the cross section at s. Balancing the forces and moments of an element
of the rod of length ds leads to (2)

∂Fc

∂s
+ K = 0 , (S19)

∂Mc

∂s
+ ê3 × Fc = 0 , (S20)

where K = Kp̂1 is the force per length that the PF exert on the CC; i.e., the
force that the PF exert on the CC acts along the line connecting the centers
of the PF and the CC. Likewise, the elastic stresses of the PF exert a force
Ff and a moment Mf on the cross section of the PF that lies at s. Force and
moment balance on an element of the PFs of length

√
gds leads to

1√
g

∂Ff

∂s
− 1√

g
K = 0 , (S21)

1√
g

∂Mf

∂s
+ ǫ̂3 × Ff = 0 . (S22)

We use linear elasticity theory to define the constitutive relation that
defines the elastic restoring moments to the strain vectors. Therefore, the
bending moments are linearly related to the curvatures and the twisting
moments depend linearly on the twist density. Since the cell cylinder is
straight in its undeformed state and the periplasmic flagella are helical,

Mc = AcΩ1ê1 + AcΩ2ê2 + CcΩ3ê3 , (S23)

Mf = Af (ω1 − κ0) ǫ̂1 + Afω2ǫ̂2 + Cf (ω3 − τ0) ǫ̂3 , (S24)

where Ac and Af are the bending moduli for the CC and PF, respectively.
Cc and Cf are the twisting moduli for the CC and PF.

The force and moment balance equations (Eqs. S19 - S22) along with
the relationships between the CC material frame and the PF material frame
(Eq. S12) comprise a system of 12 equations in 12 unknowns; however, this
system of equations can be simplified some using constants of the deforma-
tions. First, adding the force balance equations (Eqs. S19 & S21), we find
that the total force on the composite structure, Fc+Ff, is equal to a constant,
which in the absence of external forces, is zero. Therefore, Ff = −Fc ≡ −F.
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In a similar fashion, adding the moment balance equations (Eqs. S20 & S22),
leads to an equation for the total elastic restoring moment MT ,

MT ≡ Mc + Mf − ap̂1 × F = c , (S25)

where c is constant. In the absence of external forces and torques, c = 0.
Finally, the ê3 component of the CC moment balance equation (S20) gives
that Ω3 = Ω0

3, where Ω0
3 is a constant, assuming that the PF are free to slide

about the circumference of the CC.
Using the total moment equation (Eq. S25) and the force and moment

balance equations for the CC (Eqs. S19 & S20), we get 5 first order differential
equations that determine the equilibrium morphology of B. burgdorferi,

AcΞ − Af (̟2 + κ0 cos β) = 0 , (S26)

Ac

(

∂Ξ

∂s
− Υ

∂α′

∂s

)

− F2 = 0 , (S27)

Ac

(

∂Υ

∂s
+ Ξ

∂α′

∂s

)

+ F1 = 0 , (S28)

∂F2

∂s
− F3Ξ + F1

∂α′

∂s
= 0 , (S29)

∂F3

∂s
− F1Υ + F2Ξ = 0 , (S30)

where the force is written in terms of the CC frame, F = F1p̂1 + F2(ê3 ×
p̂1)+F3ê3, and the moment equations (Eq. S25) set the values of F2 and F3,

F2 =
Af√
g

∂α′

∂s
(̟1 + κ0 sin β) +

(1 − aΥ)

a

(

Cf√
g

(ω3 − τ0) − CcΩ
0
3

)

,(S31)

F3 =
Af

a
√

g
(1 − aΥ) (̟1 + κ0 sin β) − Ac

a
Υ

−∂α′

∂s

(

Cf√
g

(ω3 − τ0) − CcΩ
0
3

)

. (S32)

6



Manipulation of these equations leads to first order equations for Υ and
Ξ, and second order equations that determine α′ and β:

(

Ag3/2 + 1
) ∂Υ

∂s
= (2 + A√

g (3 − g)) Ξ
∂α′

∂s
− ΓAg3/2 (ω3 − τ0) Ξ

+

(

(Γ + 1) gω3 − 3
∂α′

∂s
− Γgτ0

)√
gκ0 cos β

−aΓcA
∂2α′

∂s2
Ω0

3 , (S33)

a (1 − aΥ)
∂2α′

∂s2
=

(

Ag3/2 + g
)

Ξ − a2 ∂Υ

∂s

∂α′

∂s
− g3/2κ0 cos β , (S34)

A∂Ξ

∂s
= AΥ

∂α′

∂s
+

1√
g

∂α′

∂s
(̟1 + κ0 sin β)

+
(1 − aΥ)

a

(

Γ√
g

(ω3 − τ0) − ΓcAΩ0
3

)

, (S35)

Γ
∂

∂s
(ω3 − τ0) =

√
gκ0 (̟1 cos β − ̟2 sin β) , (S36)

where Γ = Cf/Af, Γc = Cc/Ac, and A = Ac/Af.
The coefficient before the derivative of Υ in Eq. S33 acts like an effective

bending modulus. Therefore, we can estimate the bending modulus of the
composite object that consists of the cell and the flagella as

Aeff ≈ Ac +
1

g3/2
Af (S37)

The equation for Υ (Eq. S33) can be shown to be a total derivative.
Integrating this equation leads to,

A (1 − aΥ) Υ −√
g (̟1 + κ0 sin β)

+
a
√

g

2

(

̟2
1 + ̟2

2 + Γω2
3 − κ2

0 − Γτ 2
0

)

+ aΓcAΩ0
3

∂α′

∂s
= 0 . (S38)

The first term represents the component of the CC restoring moment along
the p̂2 direction. The second term is the component of the PF restoring mo-
ment along the same direction. The third and fourth terms are the moment
that arises due to the component of the force along the tangent vector of the
PF (F · ǫ̂3). In the absence of externally applied moments and forces, the
sum of these moments must be zero.
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Because the interaction force between the CC and PF acts along the p̂1

direction, this force can not produce a moment in the p̂1 direction. This
leads to a boundary condition Ξ = 0. We also assume that the torque on
the flagella about ǫ̂3 is zero. Finally, because the flagella are subterminally
anchored to the cell cylinder and are long enough to overlap in the center of
the cell, we treat the flagella as a continuous bundle of filaments that span
the length of the cell. As the flagella are anchored to the inner membrane
of the cell, we specify the angles that the PFs attach at the ends of the cell.
Therefore, the boundary conditions are

Ξ(s = 0) = 0 ; Ξ(s = L) = 0

ω3(s = 0) = τ0 ; ω3(s = L) = τ0

α(s = 0) = 0 ; mod

(

α(s = L)

2π

)

= αL , (S39)

where αL is the attachment angle of the periplasmic flagella at s = L, with
respect to the attachment angle at s = 0. Our numerical solution of the
equations suggest that the morphology of the bacteria is only weakly depen-
dent on this angle. Variation of this angle by ±π, leads to variations in the
wavelength and amplitude of the morphology on order of 10%.

Small Amplitude Analysis

As the equations that describe the shape of B. burgdorferi are fairly compli-
cated and we are expecting a shape that fluctuates about a single axis, we
will analyze the equations for small amplitude deformations. We consider
the case where the cell cylinder is aligned primarily with the x axis and write
its position as

rc = xx̂ + Y (x)ŷ + Z(x)ẑ . (S40)

We define that ê1 = ŷ and ê2 = ẑ. Therefore,

Ω1 = −∂2Z

∂x2
, (S41)

Ω2 =
∂2Y

∂x2
. (S42)

The position of the periplasmic flagella can be written as

rf = rc + a cos αŷ + a sin αẑ

= xx̂ + (Y (x) + a cos α) ŷ + (Z(x) + a sin α) ẑ . (S43)
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Defining ǫ̂1 = cos βŷ + sin βẑ and ǫ̂2 = − sin βŷ + cos βẑ, we find

ω1 = ̟1 sin β − ̟2 cos β , (S44)

ω2 = ̟1 cos β + ̟2 sin β , (S45)

ω3 =
∂β

∂x
, (S46)

where

̟1 =
∂2Y

∂x2
− a

∂2α

∂x2
sin α − a

(

∂α

∂x

)2

cos α , (S47)

̟2 =
∂2Z

∂x2
+ a

∂2α

∂x2
cos α − a

(

∂α

∂x

)2

sin α . (S48)

Using these equations, we can write the total energy for the composite
structure as

E =
Ac

2

∫

dx

(

(

∂2Y

∂x2

)2

+

(

∂2Z

∂x2

)2
)

+
Cc

2

∫

dxΩ2
3

+
Af

2

∫

dx (̟1 − κ0 sin β)2 + (̟2 + κ0 cos β)2

+
Cf

2

∫

dx

(

∂β

∂x
− τ0

)2

(S49)

Minimizing this energy with respect to Y and Z and setting boundary
terms to zero, we find

(

1 + A−1
) ∂2Y

∂x2
= a

∂2α

∂x2
sin α + a

(

∂α

∂x

)2

cos α + κ0 sin β , (S50)

(

1 + A−1
) ∂2Z

∂x2
= −a

∂2α

∂x2
cos α + a

(

∂α

∂x

)2

sin α − κ0 cos β . (S51)

A planar solution requires that there exists an angle θ such that Y cos θ+
Z sin θ = 0, for all Y and Z. Therefore, from Eqs. S50-S51, we are looking
for solutions with

a
∂2α

∂x2
sin(α − θ) + a

(

∂α

∂x

)2

cos(α − θ) + κ0 sin(β − θ) = 0 . (S52)

For a periodic solution, ∂α/∂x should be roughly constant. Therefore, flat-
wave solutions are ones for which a(∂α/∂x)2 ≈ κ0 and α ≈ −(β + π/2).
Minimization of the energy with respect to β gives that ∂β/∂x = τ0+O(aκ0).
Therefore, we expect that flat-wave solutions are ones with aτ 2

0 ∼ κ0.
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Numerical solution of the mathematical model

We solved Eqs. S33-S36 using the boundary conditions given in Eq. S39
and Eq. S38. We treated Eqs. S34 & S36 as first order equations for α′, β,
∂α′/∂s, and ∂β/∂s. Eqs. S33 & S35 were solved for Υ and Ξ. These six first
order differential equations (Eqs. S33-S36) and an equation for the constant
Ω0

3 were solved simultaneously using the boundary value problem solver in
MATLAB (bvp4c), using a relative tolerance of 10−6.

2 Fitting the Experimental Data

Stretching the cell cylinder

The shape of the cell cylinder of B. burgdorferi is roughly sinusoidal (4).
To fit the data from our cell cylinder stretching experiments, we assume
that the CC is sinusoidal. This assumption is also validated by the math-
ematical model. From the approximate solution given above, Eq. S33 pre-
dicts that the preferred curvature of the Υ component of the CC is approx-
imately proportional to aτ 2

0 + κ0 sin 2τ0s, where we have used ∂β/∂s ∼ 2τ0

and ∂α/∂s ∼ −τ0. Under the same approximation, the preferred curvature
of the Ξ component is zero. The effective bending modulus is, therefore,
Aeff ≈ Ac + g−3/2Af ≈ Ac + 0.6Af.

The force to stretch an elastic filament that has a sinusoidal preferred
shape with N/2 wavelengths a distance N∆L is the same force that is required
to stretch a filament that is only half a wavelength long a distance ∆L (See
Figure 2). Therefore we consider the force-displacement curve for a sinusoidal
elastic filament that is one half wavelength long. This curve is generated by
solving the Kirchoff rod equations (2),

∂M

∂s
= F× ∂r

∂s
(S53)

∂F

∂s
= 0 , (S54)

where M is the elastic restoring torque, F is the force on the filament, and
∂r/∂s is the tangent vector. In two dimensions, the elastic restoring torque
is Aeff(κ − κ0), where κ = ∂θ/∂s is the curvature, with θ the angle between
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the tangent vector and the x axis. κ0 is the preferred curvature. For this
case, we need to solve

Aeff

∂

∂s

(

∂θ

∂s
− κ0

)

= F sin θ , (S55)

and we use that κ0 = κ̃ sin ks, with κ̃ a constant. The displacement of the
ends of the filament can be found from this equation from

∆L =

∫ L

0

cos θds − L0 , (S56)

where L0 is the unstressed distance between the ends and L is the total
length of the filament. For a half wavelength of filament, L0 = π/k =
λ/2. If the actual CC is N/2 half wavelengths, then the total displacement
is N∆L. Eqs. S35 and S36 can be recast using a non-dimensional length
L̃ = κ̃L and force F̃ = F/Aκ̃2. In these variables, we generate numerically a
force/displacement curve for a filament of length λ/2. This curve is compared
to our data by minimizing

χ2 =
1

2

∑

i

min

(

(

∆Lexp,i − c1∆L̃ − c2

)2

+
(

Fexp,i − c3F̃ − c4

)2
)

(S57)

where the sum is over the experimental data points denoted by ∆Lexp and
Fexp. Here, c1 = 2N/κ̃, c3 = Aκ̃2, and c2 and c4 are constants that allow for
offsets in the zero positions for F and ∆L. The min function determines the
closest point between the ith experimental data point and the numerically
generated curve. We estimate κ̃ ≈ 1µm−1 and find the effective bending
modulus, Aeff, and the number of half wavelengths, N from our fitted values
for c1 and c3. Minimization of Eq. S57 was done numerically using the
MATLAB routine fminunc.

Stretching the periplasmic flagella

A similar procedure to that described in the previous section was used
to determine the bending modulus of the periplasmic flagella. Since the
PFs are known to be helical with preferred curvature and torsion given by
Eqs. S15 and S16, we solve Eqs. S53 and S54 using

M = Af (ω1 − κ0) ê1 + Afω
2
2 + Cf (ω3 − τ0)

2 (S58)
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and the relationships given in Eq. S7. From these equations and the known
end-to-end distances from the experiments, we calculate the force required to
displace the end of the flagellum in the x direction, using clamped boundary
conditions (fixed position and tangent vector). The bending modulus and
twisting modulus are free parameters that can be used to fit the data. We
find that the results are not sensitive to our choice for 2/3 < Cf/Af < 1.
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