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Text S1 - Supplementary Methods

A) Calculation of the PRC using the adjoint method

Let x ∈ Rn, f : Rn → Rn, and let x̄(t) be the T -periodic asymptotically stable spiking trajectory as a
solution of the system of differential equations

dx

dt
= f(x), (27)

which describes an uncoupled neuron (cf. Methods). In case of the aEIF model, eq. (27) is extended by a
reset condition, leading to discontinuities of x̄(t) at t 6= kT, k ∈ Z. We define the phase ϑ ∈ [0, T ) of x̄(t),
by a differentiable 1:1-mapping Θ between the points on the periodic spiking trajectory {x̄(t) : t ∈ R}
and the interval [0, T ), Θ(x̄(ϑ)) = ϑ, where ϑ = 0 corresponds to the spike time. Next, we extend the
domain of Θ to points in the neighborhood of x̄(t). Suppose x0 is a point on the trajectory x̄(t), y0 is a
point within its domain of attraction, and x(t), y(t) are the solutions of eq. (27) plus the reset condition
in case of the aEIF model with initial conditions x0, y0. The phase of y0, Θ(y0), is then defined by
Θ(x0) = Θ(y0) if limt→∞ ||x(t)− y(t)|| = 0.

Let p ∈ Rn be a small perturbation at phase ϑ which changes the phase of the neuron to ϑpert. This
changes the time of the next spike to Tpert = ϑ+ T − ϑpert. We then obtain for the PRC

PRC(ϑ) = T − Tpert(ϑ) = ϑpert − ϑ = Θ(x̄(ϑ) + p)−Θ(x̄(ϑ)) = ∇Θ(x̄(ϑ))Tp +O(||p||2), (28)

where we have applied Taylor expansion of Θ(x̄(ϑ) + p) around x̄(ϑ). As Θ(x̄(t) + p) is rather difficult
to calculate, we instead compute ∇Θ(x̄(t)), as explained in the following.

Let x̄(t) +z(t) be a solution of eq. (27) with initial condition x̄(ϑ) +z(ϑ) = x̄(ϑ) +p close to the periodic
spiking trajectory, i.e. z(t) is the deviation from x̄(t) for t ≥ ϑ. According to the definition of the phase
function Θ, the difference of the perturbed trajectory’s phase and that of the periodic attractor x̄(t) is
independent of time, that is

Θ(x̄(t) + z(t))−Θ(x̄(t)) = c ∈ R ∀t ≥ ϑ, (29)

which can be rewritten as ∇Θ(x̄(t))T z(t) + O(||z(t)||2) = c using Taylor expansion, since Θ is differen-
tiable. We neglect terms of second and higher order and define q(t) := ∇Θ(x̄(t)) to obtain

q(t)T z(t) = c ∀t ≥ ϑ. (30)

For ϑ < t < T , eq. (30) implies

d

dt

(
q(t)T z(t)

)
=
dq(t)T

dt
z(t) + q(t)TDxf(x̄(t))z(t) =

(
dq(t)T

dt
+Dxf(x̄(t))Tq(t)

)T

z(t) = 0, (31)
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where we have used the chain rule and the fact that z(t) satisfies the variational equation

dz(t)

dt
= Dxf(x̄(t))z(t) (32)

up to an error of O(||z(t)||2), which can be neglected. Since p and thus z(t) are arbitrary, q(t) satisfies
the linearized adjoint equation

dq(t)T

dt
= −Dxf(x̄(t))Tq(t). (33)

In case of the aEIF model we have a discontinuity in x̄(t) for t = T . At this point, the displacement z(t)
of x̄(t) changes discontinuously according to z(T ) = Az(T−), where

A =

(
dV̄

dt
(T−)

)−1

 dV̄

dt
(0) 0

dw̄

dt
(0)− dw̄

dt
(T−)

dV̄

dt
(T−)

 . (34)

A derivation is provided in [1]. The corresponding transition for the adjoint, q(T ) = Bq(T−) can be
obtained using eq. (30),

q(T )T z(T ) = q(T )TAz(T−) =
(
Bq(T−)

)T
Az(T−) = q(T−)TBTAz(T−) = q(T−)T z(T−). (35)

That is, matrix B, which accounts for the jump of q(t) is given by B = A−T , see e.g. [2, 3]. Note that
for a continuous neuron model such as the Traub model, A = B = I, where I is the identity matrix.

For T < ϑ ≤ T + ϑ, q(t) satisfies the linearized adjoint eq. (33), which follows again from eq. (30).
As q(t) is T -periodic, it solves eq. (33) for t 6= kT, k ∈ Z, and the transition at t = kT is given by
q(kT ) = Bq(kT−). By differentiating Θ(x̄(ϑ)) = ϑ with respect to ϑ, we obtain

q(ϑ)T
dx̄(ϑ)

dϑ
= q(ϑ)T f(x̄(ϑ)) = 1 ∀ϑ ∈ (0, T ), and (36)

q(t)T f(x̄(t)) = 1 ∀t ∈ R, (37)

using eq. (35), the T -periodicity of q(t), and the fact that f(x̄) solves the variational eq. (32) with
transition f(x̄(kT )) = Af(x̄(kT−)). We applied eq. (37) as a normalization condition to determine the
appropriate solution of the adjoint system as explained below.

Any T -periodic q̃(t) that solves the adjoint system eq. (33) for t 6= kT and fulfills q̃(kT ) = Bq̃(kT−) for
t = kT , can be written as q̃(t) = αq(t), α ∈ R. This follows from the asymptotic stability of x̄(t), which
implies that T -periodic solutions of the variational equation (32) with transition z(kT ) = Az(kT−) at the
discontinuities, are multiples of f(x̄(t)). Thus the space of T -periodic solutions of the adjoint system is
one-dimensional [3,4]. The factor α can be determined by requiring that q̃(t) satisfies the normalization
condition eq. (37) for one t. This implies that q̃(t) fulfills eq. (37) for all t ∈ R, as can be seen from

d

dt

(
q̃(t)T f(x̄(t))

)
= −(Dxf(x̄(t))T q̃)T f(x̄(t)) + q̃(t)TDxf(x̄(t))f(x̄(t)) = 0 (38)

for t 6= kT and q(kT )T f(x̄(kT ) = q(kT−)T f(x̄(kT−).

In case of the continuous Traub model, we solve the linearized adjoint eq. (33) numerically backwards in
time over several cycles with initial value q(0) = f(x̄(0)) to obtain a T -periodic solution q̃(t) = αq(t), and
apply the normalization condition eq. (37) at t = 0 to fix α, i.e. α = q̃(0)T f(x̄(0)). For details, see e.g. [4].
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In case of the aEIF model, q(t) is the unique solution to the linearized adjoint eq. (33), subject to the
normalization condition eq. (37) at t = 0,

q(0)T f(x̄(0)) = 1, (39)

and the condition
q(0) = Bq(T−) (40)

withB =

(
dV̄

dt
(0)

)−1

dV̄dt (T−)
dw̄

dt
(T−)− dw̄

dt
(0)

0
dV̄

dt
(0)

 , (41)

which takes account of the discontinuity and guarantees that q(t) is T -periodic. One of the two scalar
equations of the latter condition eq. (40) can be omitted as explained below. Eq. (39) implies that the
normalization condition, eq. (37), is satisfied for all t ∈ [0, T ) (cf. eq. (38)), including t = T−. We then
obtain

q(0)T f(x̄(0)) = q(T−)T f(x̄(T−)) (42)

⇐⇒ qV (0)
dV̄

dt
(0) + qw(0)

dw̄

dt
(0) = qV (T−)

dV̄

dt
(T−) + qw(T−)

dw̄

dt
(T−) (43)

⇐⇒ qV (0)
dV̄

dt
(0) =

dV̄

dt
(T−)qV (T−) +

(
dw̄

dt
(T−)− dw̄

dt
(0)

)
qw(T−), (44)

where eq. (44) is the first scalar equation of eq. (40) multiplied with dV̄
dt (0). In eq. (44) we have used the

second scalar equation of eq. (40),
qw(0) = qw(T−). (45)

It follows that if eqs. (39) and (45) are satisfied, eq. (44) and thus the first scalar equation of eq. (40)
hold as well. It is therefore sufficient to solve eq. (33) for t ∈ (0, T ) using conditions (39) and (45). This
is equivalent the boundary value problem, eqs. (17)–(20) from the Methods section of the main paper.

As the synaptic current only perturbs the membrane potential, the perturbation p = (p1, 0, . . . , 0)T

considered here is nonzero only in the first component. Thus, the PRC reduces to qV (ϑ) p1, where qV

denotes the first component of q. Since p1 is only a scaling factor, in this study we identify qV with the
PRC.

B) Phase reduction

In the following we describe how the full network model eq. (10) is reduced to a lower dimensional network
model where each neuron is represented by its phase ϑi. This phase reduction requires weak coupling
between each pair of neurons which we emphasize by rewriting Isyn(Vi, Vj) = εĨsyn(Vi, Vj), where Isyn
is the synaptic current introduced in eq. (11) and ε > 0 is small (due to small conductance gij). By
applying a change of variables ϑi := Θ(xi) in eq. (10), with phase function Θ as defined in the previous
section, the network equation for neuron i becomes

dϑi
dt

=
dΘ(xi)

dt
= ∇Θ(xi)

T dxi

dt
(46)

= ∇Θ(xi)
T f(xi) +∇Θ(xi)

T
N∑
j=1

hij(xi,xj) (47)

= 1 + ε
∂Θ(xi)

∂x1

N∑
j=1

Ĩsyn(xi,xj). (48)
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In eqs. (46)–(48) we have used the chain rule, the relation ∇Θ(xi)
T f(xi) = 1 which is evident when

considering the uncoupled system, and the fact that the coupling function hij(xi,xj) is nonzero only in

the first component where it consists of εĨsyn(xi,xj). Next, to get rid of the state variables xi in eq. (48),
we first approximate xi using the periodic spiking trajectories parametrized by the phase x̄i(ϑi). This
approximation causes an error of O(ε), which becomes O(ε2) due to the factor ε,

dϑi
dt

= 1 + ε
∂Θ(x̄i(ϑi))

∂x1

N∑
j=1

Ĩsyn(x̄i(ϑi), x̄j(ϑj)) +O(ε2). (49)

We neglect second order terms in ε and apply another change of variables ψi := ϑi − t,

dψi

dt
= ε

∂Θ(x̄i(t+ ψi))

∂x1

N∑
j=1

Ĩsyn(x̄i(t+ ψi), x̄j(t+ ψj)), (50)

to obtain an equation to which we can apply the method of averaging, see e.g. [5], that leads to

dψ̄i

dt
= ε

1

T

∫ T

0

∂Θ(x̄i(s+ ψ̄i))

∂x1

N∑
j=1

Ĩsyn(x̄i(s+ ψ̄i), x̄j(s+ ψ̄j))ds (51)

= ε

N∑
j=1

1

T

∫ T

0

∂Θ(x̄i(s))

∂x1
Ĩsyn(x̄i(s), x̄j(s+ ψ̄j − ψ̄i))ds, (52)

where we have used in eq. (52) that the spiking trajectories are T -periodic. Changing the variables one
more time ϑ̄i := t+ ψ̄i we arrive at

dϑ̄i
dt

= 1 + ε

N∑
j=1

1

T

∫ T

0

∂Θ(x̄i(s))

∂x1
Ĩsyn(x̄i(s), x̄j(s+ ϑ̄j − ϑ̄i))ds, (53)

which is identical to eq. (21), recognizing that ∂Θ(x̄i(s))/∂x1 = qVi (s) and εĨsyn(Vi, Vj) = Isyn(Vi, Vj).
Note that the phases ϑi in eqs. (21) and (22) are averaged phases ϑ̄i.
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