FRAP model of nucleocytoplasmic translocation applied to nuclear export

As stated in the main text, the passive diffusion fluxes are expressed by:

$$J_{p}^{c \to N} = P_{NES} C_{NES}^{c}$$
(S1)
$$J_{p}^{b \to c} = P_{NES} \chi_{NES}^{N} C_{NES}^{N}$$
(S2)

where $J_{p}^{C=N}$ and $J_{p}^{N=C}$ are the passive fluxes, P_{NES} is the *permeability coefficient* of the NE for free NES-GFP, C_{MES}^{c} and C_{MES}^{N} are the average concentrations of the entire NES-GFP pool in cytoplasm and nucleus, and χ_{MES}^{N} is the molar fraction of NES-GFP pool not engaged in a complex with the exporting in nucleus, respectively.

The active export flux is instead given by:

$$J_{a}^{N \to C} = v_{NES}^{N \to C} (1 - \chi_{NES}^{N}) C_{NES}^{N}$$
(S3)

 $v_{_{\text{NES}}}^{_{\text{N-C}}}$ represents the first order rate constant of active export. At steady state:

$$J_{p}^{C \to N} + J_{p}^{N \to C} + J_{c}^{N \to C} = 0$$
 (S4)

If we define:

$$K_{eq} = \frac{C_{NES}^{N}}{C_{NES}^{C}}$$
(S5)

we obtain from S1-S3:

$$K_{eq} = \frac{P_{NES}}{\nu_{NES}^{N-C} \left(1 - \chi_{NES}^{N}\right) + P_{NES} \chi_{NES}^{N}}$$
(S6)

We now define the *excess active flux* of the exported cargo Φ^{N-c} as:

$$\Phi^{N \to C} = P_{NES} \left(\frac{1}{K_{eq}} - 1 \right) C_{NES}^{N}$$
(S7)

 Φ^{N-c} is an experimentally measurable parameter and it corresponds to the global N \rightarrow C flux (passive+active) minus the theoretical passive N \rightarrow C flux of NES-GFP in absence of exportin. As stated in the main text and reported in (1) Φ^{N-c} can be computed from the monexponential fitting parameters of recovered FRAP curves and the nuclear radius. By combining S6 and S7, we get the fundamental equation of our model:

$$\Phi^{N \to C} = \left(\nu_{\text{NeS}}^{N \to C} - P_{\text{NeS}}\right) \left(1 - \chi_{\text{NeS}}^{N}\right) C_{\text{NeS}}^{N}$$
(S8)

For very large $C_{\text{NES}}^{\text{N}}$, the product $(1 - \chi_{\text{NES}}^{\text{N}})C_{\text{NES}}^{\text{N}}$ converges to C_{Es}^{N} , i.e. all the exportin receptor is saturated. We always found out $\nu_{\text{NES}}^{\text{N-C}} >> P_{\text{NES}}$ (see below), and eq. S8 becomes in this limit:

$$\Phi^{N \to C} \approx \nu_{\text{NES}}^{N \to C} C_{\text{Ex}}^{N} = V_{\text{m}}^{N \to C} \quad \text{for } C_{\text{NES}}^{N} \to \infty$$
 (S9)

 V_{m}^{N-C} is the *truly intrinsic dynamic parameter of nuclear export*, because it quantifies the translocation efficiency, in terms of exported molecule per second, of the exportin-NES complex through the NPC.

When the exportins are not fully saturated by NES $(\chi_{_{NES}}^{_{N}} > 0)$, $\Phi^{_{N-C}}$ is a function of $C_{_{NES}}^{_{N}}$. Indeed, $\chi_{_{NES}}^{_{N}}$ is connected to $C_{_{NES}}^{_{N}}$ through the mass action law together with the mass conservation balance. The simplest case occurs when a 1:1 complex is formed; we have:

$$1 - \chi_{_{\rm NES}}^{^{\rm N}} = \frac{\beta - \left(\beta^2 - 4C_{_{\rm NES}}^{^{\rm N}}C_{_{\rm Ex}}^{^{\rm N}}\right)^{0.5}}{2C_{_{\rm NES}}^{^{\rm N}}}$$
(S10)

where $\beta = (C_{_{NES}}^{^{N}} + C_{_{Ex}}^{^{N}} + K_{_{D}}^{^{N}})$, $C_{_{Ex}}^{^{N}}$ is the global nuclear concentration of exportin and $K_{_{D}}^{^{*}}$ is the intranuclear dissociation constant of the NES-GFP·Ex complex (the asterisk denotes that the dissociation constant is in principle different from the actual binding constant measured *in vitro* owing to the intranuclear environment: see main text for further discussion on this point).

If a reasonable estimate of C_{Ex}^{N} is assumed, fitting of experimental Φ^{N-C} vs. C_{NES}^{N} curve to eq. S8 and S10 yields both V_{m}^{N-C} and K_{D}^{*} . Accordingly, the thermodynamic as well as the kinetic features of the active export can be fully identified. It is worth noting that we always assumed $C_{Ex}^{N} = [CRM1]_{N} = 0.3 \ \mu\text{M}$ after Riddick et al. (2). Note that $C_{Ex}^{N} = 0.3 \ \mu\text{M}$ leads to $v_{NES}^{N-C} = 620 \pm 145 \ \mu\text{m}^{3}/\text{s}$, a much higher value than P_{NES} ($\overline{P}_{NES} = 9.5 \pm 5 \ \mu\text{m}^{3}/\text{s}$), thus justifying the assumption underlying eq. S9.

- 1. Cardarelli, F., Bizzarri, R., Serresi, M., Albertazzi, L., and Beltram, F. (2009) *J Biol Chem* 284, 36638-36646
- 2. Riddick, G., and Macara, I. G. (2007) Mol Syst Biol 3, 118