Supporting Information

Lu et al. 10.1073/pnas.1203094109

Fig. S1. Seed size variation in ploidy series (Col-0) and small RNA distribution in leaves. (A) Seed size variation in ploidy series of Col. Note that seed abortion in 2×4 triploids in Col is related to maternal expression of *TTG2* during late stage of seed development (1) and possibly other unknown genes. (Scale bar, 1 mm.) (B) Quantification of stomata sizes in ploidy series. (C) Quantification of dry seed weight in ploidy series. (D) Distribution of small RNAs in leaves. (*E* and *F*) siRNA densities in TE genes (TE, red), genes containing TEs in 5' upstream (2 kb) and 3' downstream (2 kb) regions (G+TE, blue), and TE-overlapped genes (G/TE, green), and TE-free genes (G-TE, black) in seeds (*E*) and leaves (*F*).

1. Dilkes BP, et al. (2008) The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biol 6:2707-2720.

Fig. S2. miRNA and ta-siRNA expression in ploidy series. (A) Number of miRNA and ta-siRNA loci identified in leaves and seeds. (B) miRNA expression in seed and leaf. (C) ta-siRNA expression in seed and leaf. (D) miRNA expression in interploidy crosses. (E) miRNA expression in balanced crosses. (F) Heatmap of differentially expressed miRNAs in ploidy series seeds. (G-I) Association of TEs with siRNA abundance in protein-coding genes, GRF1 (AT4G09000) (G), GRF3 (AT5G38480) (H), and GRF4 (AT3G52910) (I).

Fig. S3. Correlation of differentially expressed genes and siRNAs in interploidy crosses. (*A* and *B*) Venn diagram of endosperm-preferred early seed stage (EP-ESS) and silique tissue-preferred early seed stage (OST-ESS) with up-regulated genes (*Left*) and down-regulated genes (*Right*) in 2 × 4 seeds relative to 4 × 2 seeds (*A*) or in 2 × 6 seeds relative to 6 × 2 seeds (*B*). (*C*) GOSlim term showing an enrichment of siRNA generating genes; stars indicate GO groups with P < 0.01; DRB, DNA or RNA binding; HA, hydrolase activity; KA, kinase activity; NAB, nucleic acid binding; NB, nucleotide binding; OB, other binding; OEA, other enzyme activity; OMF, other molecular functions; PB, protein binding; RBA, receptor binding or activity; SMA, structural molecular activity; TF, transcription factor activity; TA, transferase activity; TPA, transporter activity; UMF, unknown molecular functions. (*D*) Inverse correlation of mRNA and siRNA abundance with expression levels of *AGLs* (black) but not with that of other siRNA generating genes (gray) in reciprocal interploidy crosses (2 × 4 vs. 4 × 2).

Fig. S4. qRT-PCR analysis (REL, relative expression levels) of siRNA-related AGL genes in different stages of developing siliques.

DNAS

Fig. S5. Small RNA expression in type I MADS box transcription factor genes and their expression patterns during female gametophyte and seed development. The genes are arranged according to the phylogenic tree. Gradient red represent different levels of small RNA expression measured by number of normalized 24-nt reads in this study. 5', upstream 2-kb region of a gene; coding, coding regions; 3', downstream 2-kb region of a gene. Gray boxes indicate expression detected in other studies (1–4). FG: female gametophyte; END: endosperm; EMB: embryo.

1. Bemer M, Heijmans K, Airoldi C, Davies B, Angenent GC (2010) An atlas of type I MADS box gene expression during female gametophyte and seed development in Arabidopsis. Plant Physiol 154:287–300.

2. Portereiko MF, et al. (2006) AGL80 is required for central cell and endosperm developmen0074 in Arabidopsis. Plant Cell 18:1862-1872.

3. Day RC, Herridge RP, Ambrose BA, Macknight RC (2008) Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. *Plant Physiol* 148:1964–1984.

4. Walia H, et al. (2009) Dosage-dependent deregulation of an AGAMOUS-LIKE gene cluster contributes to interspecific incompatibility. Curr Biol 19:1128–1132.

SANG SANG

Fig. S6. siRNA profiles (*Left*) and qRT-PCR analysis (*Right*) of additional *AGLs* in 2×4 and 4×2 triploids and their parents (2×2 and 4×4). (*A*) *AGL23*, (*B*) *AGL33*, (*C*) *AGL34*, (*D*) *AGL84*, (*E*) *AGL86*, and (*F*) *AGL92*. Diff, siRNA read differences that were higher in 4×2 than 2×4 (above the line) or vice versa (below the line); gray box, gene; black box, transposon. Genomic coordinates are shown *Above* each diagram. SEs were calculated from three biological replicates.

Fig. 57. qRT-PCR (REL, relative expression levels) and small RNA blot analyses in interploidy crosses with nrpd1a. (A–C) REL of AGL36 (A), AGL62 (B) and AGL90 (C) (n = 3 biological replicates). (D) Small RNA blot analysis of AGL-siRNAs. Both 24- and 21-nt siRNAs were detected in AGL91. U6 was used as a control.

Table S1. Sequence reads of small RNA libraries from *Arabidopsis thaliana* reciprocal interploidy crosses and their parents (rosette leaves)

Genomic feature	2L (%)	4L (%)	2 × 4L (%)	4 imes 2L (%)
All reads	8,929,273	3,165,346	11,610,370	11,886,105
Filtered	4,257,442 (48)	895,774 (28)	3,072,403 (26)	4,697,603 (40)
Gene	896,187 (10)	360,142 (11)	1,414,223 (12)	1,153,949 (10)
Transposon	1,297,503 (15)	543,352 (17)	2,606,896 (22)	2,410,799 (20)
miRNA	890,159 (10)	829,203 (26)	2,479,074 (21)	1,030,473 (9)
ta-siRNA	16,333 (0.2)	7,075 (0.2)	46,154 (0.4)	22,157 (0.2)
Intergenic regions	1,571,649 (18)	529,800 (17)	1,991,620 (17)	2,571,124 (22)
Total small RNA	4,671,831 (52)	2,269,572 (72)	8,537,967 (74)	7,188,502 (60)

Rosette leaves in diploid (2L); tetraploids (4L), paternal-excess triploids (2 \times 4L), and maternal-excess triploids (4 \times 2L); all reads, reads perfectly match the genome; filtered, number of reads that match chloroplast, mitochondrial genomes, and structural noncoding RNAs, including rRNA, tRNA, snoRNA, and snRNA.

Table S2. Sequence reads of small RNA libraries from *Arabidopsis thaliana* reciprocal interploidy crosses and their parents (seeds)

Genomic feature	25 (%)	4S (%)	2 × 4S (%)	4 × 25 (%)
All reads	12,082,171	11,642,856	12,705,829	11,516,592
Filtered	778,465 (6)	1,274,150 (11)	2,637,149 (20)	1,742,706 (15)
Gene	2,330,912 (19)	2,039,493 (18)	1,729,226 (13)	2,029,347 (18)
Transposon	2,069,358 (17)	1,740,812 (15)	1,398,336 (11)	1,814,304 (16)
miRNA	1,227,444 (10)	1,647,975 (14)	2,421,478 (19)	668,594 (6)
ta-siRNA	469 (0.004)	550 (0.004)	395 (0.003)	688 (0.006)
Intergenic regions	5,675,523 (47)	4,939,876 (42)	4,519,245 (36)	5,260,953 (46)
Total small RNA	11,303,706 (94)	10,368,706 (89)	10,068,680 (79)	9,773,886 (85)

Dissected seeds at 6 d after pollination (DAP); seeds in diploid (2S), tetraploids (4S), paternal-excess triploid (2 \times 4S), and maternal-excess triploid (4 \times 2S); reads classifications are as in Table S1.

Locus	Gene name	2 × 2	4×4	2×4	4×2	SS, %	P value	TE	Туре
AGL91	AT3G66656	15029	17843	10688	22982	89	0.0079	3	I
AGL40	AT4G36590	7941	9395	4834	11665	44	0.0092	4	I.
AGL33	AT2G26320	580	797	452	1076	67	0.0540	6	I.
AGL36	AT5G26650	980	886	510	1034	30	0.0009	6	I.
AGL86	AT1G31630	1000	950	1052	835	40	0.0200	2	I
AGL62	AT5G60440	1121	530	548	820	46	0.0393	5	I.
AGL90	AT5G27960	252	252	122	311	36	0.0495	5	I.
AGL34	AT5G26580	82	75	39	98	66	0.0849	5	I.
AGL87	AT1G22590	117	100	5	84	100	0.2453	5	I.
AGL92	AT1G31640	72	43	73	61	54	0.0712	5	I.
AGL23	AT1G65360	84	55	40	54	95	0.2088	3	I.
AGL28	AT1G01530	28	12	12	23	13	0.0893	3	I.
AGL84	AT5G49420	11	9	7	15	83	0.0305	1	I.
AGL42	AT5G62165	22	22	42	34	29	0.1165	0	П
AGL66	AT1G77980	32	12	10	13	26	0.0456	3	II
AGL14	AT4G11880	7	29	4	12	68	0.3756	1	П
AGL12	AT1G71692	20	11	24	10	16	0.2452	0	П
AGL11	AT4G09960	10	16	13	6	23	0.3756	4	П

Table S3. A list of MADS box genes that possess more than 10 reads from transcribed regions in at least one line

The 24-nt reads were normalized per 10 million; locus, the unique AGI identifier; %, percentage of reads from the sense strand; P values, probability of a locus that generates secondary siRNAs by chance; TE, number of transposons in the locus and \pm 2-kb regions.

PNAS PNAS

Table S4. 5' and 3' adapters

Adapter	Sample	Sequence
5' adapter	2×2 seed/leaf	5'-GUUCAGAGUUCUACAGUCCGACGAUCA-3'
	4×4 seed/leaf	5'-GUUCAGAGUUCUACAGUCCGACGAUCT-3'
	2×4 seed/leaf	5′-GUUCAGAGUUCUACAGUCCGACGAUCC-3′
	4×2 seed/leaf	5'-GUUCAGAGUUCUACAGUCCGACGAUCG-3'
3' adapter		5' P-UCGUAUGCCGUCUUCUGCUUGUidT

The bases that were used as a barcode in each $\mathbf{5}'$ adaptor are underlined.

Table S5. qPCR primers

PNAS PNAS

Gene	Forward primer sequence	Reverse primer sequence
AGL23	TGACCACTTTCGAGGGTGTGTTG	TTACTCCACCACTCCTCAGCGTTT
AGL28	ACTTGACCACTCTTTAGGGCGTG	ACCACTTCTCAGCGTCCTTGTTCT
AGL33	TTGTTTCTCCCACCGAGAAGCCT	TCACACCTCTCTTCCCGTTCTTGT
AGL34	GATGCGAATGCAACTGCGGTAAC	ACAAGGTGTTGAAACGGTCGATGC
AGL36	ATGAATCATGTTGGAGGGCG	GCAGTTTCCGTCCACGAAAG
AGL40	GCCATTGTCCATCATCAGAACA	CGGACGGGTTTCAACAAGTT
AGL42	GATCGAACGCTACCGCAAGT	TCGTGATTGCTGGTTTCATGA
AGL62	AATTGGTGGGAAGATCCCGT	CCCCTCGAGTTGAGATAACGC
AGL84	ACCAAACGCCGTGAAGGTCTCTA	AGACAACGGCATCAACAGAGGAG
AGL86	TGAGCATCAGTATGGTGCAAGGG	TGAAGCGGAGGAGGAAAGGAAGA
AGL87	ACCGTTCTATGTGGTTTACCCGCT	TGCTTCTCTACCGGAAGTTCGCTT
AGL90	ACCAGCCGTTGATCTTGCTT	ACATCGGTGGTTGAAGGCAT
AGL91	AACAAACCGTATTCCTTCGGG	CCGTTCTGCAATCACATCAAA
AGL92	TCATGAGACTTTCTTGCGGGACC	TGAAGGTCCCTTGCACCATACTGT
FIS2	TCTTGCCCATTTTGCTTGATT	AAGTTGCAAGCCCTCGTGAC
FWA	AGCCTGGTGAGCTAACTGGG	GCCAAACAGAAGTGGATGCAC
MEA	GTTTGGATGATCTGGTCGTGC	CCACTTCGAGGTACTTGGCG
PHE1	GTGGTGTTGACGCATGTGC	CCTGGATCGAGTTGTACGGG
GRF1	GGATTAGGCGTCAACACCGA	GTTATTCGTCTTTTTCCCGGG
GRF3	TGAGGCCCTTCTTTGACGAT	TGTCAGCTTCTTGGAGCGAA
GRF4	CACCAACCTTCTTGGTATTGGG	CCCTGGCTCAGGATCCATT
NRPD1A	GGCGGGTGAGCTGTACTTGA	CTTTTGCCCCGATCTCCATA

Table S6. Probe sequences

Gene	Sequence
miR166	GGG GAA TGA AGC CTG GTC CGA
miR172	ATG CAG CAT CAT CAA GAT TCT
miR396	AGTTCAAGAAAGCTGTGGAA
miR832	TTTCGATTCCCGATCCCAGCA
AGL91	TTGCCTCTACTATAGCCTGAT;
	ATTGCCTCTACTATAGCCTGA;
	TCTTAAACCGTTCTGCAATCACAT;
	GTTGAGGCGTTTACATATCTTCTT;
	CTTAAACCGTTCTGCAATCACATC;
	CTATTGCCTCTACTATAGCCTGAT;
	TTGCCTCTACTATAGCCTGATGTT
AGL40	ATACCAGTTTCCTACTTGTTCTCT;
	ATGCCAATTCTATGTCTATAACTT;
	TTCTGCCATTGTCCATCATCA;
	AACCATAATTCTGCCATTGTCCAT;
	TTCATCGCTTTTCGAATCCTA;
	TGACGACCTTTGGTACTTCT
U6	GCTAATCTTCTCTGTATCGTTCC

Other Supporting Information Files

Dataset S1 (XLS)	
Dataset S2 (XLS)	
Dataset S3 (XLS)	
Dataset S4 (XLS)	

PNAS PNAS