

Supplemental Figure 1. No differences in miniature postsynaptic potential amplitudes in dentate granule cells across genotypes. Whole-cell recordings were made from acute hippocampal slices. The amplitude of miniature IPSCs (*A*) and mEPSCs (*B*) was unaffected by hAPP/A β expression and tau reduction (*n* = 2000–2400 events from 10–12 cells, 200 events from each, in four mice per genotype).

Supplemental Figure 2. Reduced excitatory drive onto inhibitory interneurons in hAPPJ20 mice. Whole-cell recordings were made from acute hippocampal slices. In the absence of pharmacological blockers, the frequency of sIPSCs onto granule cells was reduced in hAPPJ20/*Tau*^{+/+} cells (CTRL, see also Fig. 9). To determine whether this effect was caused by reduced excitatory drive onto inhibitory interneurons, we blocked excitatory inputs with the AMPA receptor blocker 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) and the NMDA receptor blocker (2R)-amino-5-phosphonovaleric acid (APV). In the presence of NBQX+APV, sIPSC frequency did not differ in NTG and hAPPJ20 mice. The difference between sIPSC frequencies recorded under control and NBQX+APV conditions (Difference) reflects the sIPSC component caused by excitatory inputs to inhibitory interneurons and was reduced in hAPPJ20 mice. (* p < 0.05 by ANOVA; n = 10 cells from three mice per genotype)

Supplemental Figure 3. No differences in sEPSC frequency, sEPSC amplitude, or sIPSC amplitude in dentate granule cells across genotypes. Whole-cell recordings were made from acute hippocampal slices. The frequency (A,B) and amplitude (D) of sEPSCs and the amplitude of sIPSCs (C) were unaffected by hAPP/A β expression and tau reduction (n = 2800-3000 events from 14–15 cells, 200 events from each, in four mice per genotype).

Supplemental Figure 4. Tau reduction prevents NMDA receptor dysfunction in dentate granule cells of hAPPJ20 mice. Whole-cell recordings were made from acute hippocampal slices in the presence of picrotoxin. *A*, NMDA receptor (NMDAR)–mediated currents were isolated as described in Methods. Evoked NMDAR currents were decreased in hAPPJ20/*Tau*^{+/+} mice but not in hAPPJ20/*Tau*^{-/-} mice (hAPP x tau interaction, p < 0.0005 by two-way ANOVA; *** p < 0.001 vs all other groups by *post hoc* test; n = 15-18 cells from four mice per genotype). *B*, AMPA receptor (AMPAR)–mediated currents were isolated as described in Methods. There were no differences between genotypes.

Supplemental Figure 5. An independent line of *Tau*-deficient mice is also protected against hAPP/A β -induced behavioral deficits. Mice with a GFP knock-in allele replacing the *MAPT* locus (Tucker et al., 2001) were crossed with hAPPJ20 mice. *A*, Elevated plus maze. Tau reduction prevented the hyperactivity typically seen in hAPP/*Tau*^{+/+} mice (p < 0.05 by ANOVA; * p < 0.05 by *post hoc* test; n = 10 mice per genotype; age 4.5–7.5 months). *B*, Novel object recognition test. hAPPJ20/*Tau*^{+/+} mice showed no memory of the familiar object. This deficit was also blocked by tau reduction (** p < 0.01 between familiar and novel object; n = 10 mice per genotype; age 4.5–7.5 months).