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ABSTRACT

In order to scan nucleic acid databases for potentially
relevant but as yet unknown signals, we have
developed an improved statistical model for pattern
analysis of nucleic acid sequences by modifying
previous methods based on Markov chains. We
demonstrate the importance of selecting the
appropriate parameters in order for the method to
function at all. The model allows the simultaneous
analysis of several short sequences with unequal base
frequencies and Markov order kO as is usually the
case in databases. As a test of these modifications, we
show that in E.coli sequences there is a bias against
palindromic hexamers which correspond to known
restriction enzyme recognition sites.

INTRODUCTION

The rapid growth of DNA-sequence databases seen in the last
few years (1,2,3,4,5,6) makes it increasingly possible to identify
biologically interesting sequence motifs by statistical methods.
In 1982, Dumas and Ninio (7) and Stormo, Schneider and Gold
(8) introduced the concept of 'words' or k-tuples for sequence
analysis in molecular biology. Thus, a nucleic acid sequence can
be viewed as consisting of overlapping 'words' instead of one
continuous stretch of information. Soon it was recognized that
not only the four monomers (A,C,G,T) but also higher oligomers
are nonrandomly distributed (9,10,11,12).
Two general ideas emerged from these observations. First,

relatively large functional domains may show distinct oligomer
distributions and thereby can be distinguished from each other.
This was shown to be true by Smith et al. (13) who found that
exons and introns can be separated on the basis of their
dinucleotide frequencies. Second, there may be a bias against
or towards sequence motifs which are used as regulatory or

recognition signals. Indeed, it was shown that highly recurring
oligomers in eukaryotic DNA often correspond to regulatory
sequences or protein binding sites (14). Dinucleotide distribution
has also been used to predict the frequencies of restriction
endonuclease recognition sequences (15).
Meanwhile there are several investigations published which

have used and expanded the concept of k-tuples (16,17,18). In
a next step, Markov chain methods were used to address statistical
analysis of biological sequences(19,20,23). These studies showed
that the probability of finding a particular base at one position

can depend not only on the immediately adjacent bases but also
on several more distant bases upstream or downstream. It was
also shown that within a sequence this dependency can vary.
These methods could not be used to predict expected
oligonucleotide frequencies. Recenfly more rigorous statistical
models based on Markov chains have been developed
(21,22,24,25,26) which address this problem. There the expected
number of occurences of each oligomer of length L can be
calculated from observed frequencies of oligomers of length less
than L.
However, as we show in this paper, the algorithms for

calculating the expected frequencies of oligomers given in (24)
and (26) are not applied'appropriately. In addition, we improve
the statistical method of Pevzner et al. (26) to permit the
simultaneous analysis of several linear sequences with unequal
base frequencies and Markov order k * 0. These are conditions
of real databases.
To test this modified statistical model, we examined all E.coli

sequences stored in the GenBankTM database for the occurrence
of palindromic hexamers. In general agreement with previous
results (21,22), we find that palindromic hexamers are less
frequent than expected. In addition, those hexamers which
correspond to restriction enzyme recognition sites are often those
hexamers which deviate most strongly from the expected
frequencies.

MATERIAL

The sequences were obtained from the GenBankTM database,
version 60 and computed on a microVAX II from Digital
Equipment Corporation. For the investigation of the hexameric
palindroms we used 797 E.coli sequences with a total length of
about 1.2x 106 bases. Some programs of the GCG (Genetics
Computer Group) program package have been used to access

the sequence data (27).

METHOD AND RESULTS

We define the sequence S by:
S = SIS2S3...Sn; Si e {A,C,G,TJ, i=1,...n.

s = sIS2s3...sL; si e IA,C,G,TJ, i= 1,...L describes an oligomer
of length L.

In this paper we treat nucleic acid sequences as Markov chains
which implies that the chain has a finite 'memory'. A stationary
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Markov chain with Markov order (Mo) k is defined such that
the conditional probabilities satisfy

P(SNI|SN-_I..) = P(SN SN I .. SN-k)0
Border effect
For the statistical analysis of biological sequences stored in
computer databases we were concerned that the ends of the
sequences might not be of random composition. To test this we
choose the set of all human immunoglobulin gene sequences
stored in the database. These 207 entries include both germ line
and rearranged sequences. We counted the oligomers of length
L=1 to L=5 by one base shift (overlapping oligomers). The
oligomers derived from the ends of these sequences showed an
unusual distribution. For the 5' end of the sequences:

84 began with G
38 ,, ,, GA
11 ,, ,, GAT
11 ,, ,, GATC
7 ,, ,, GATCA.

Assuming that the oligomers are Poisson distributed, the
probability that a specific oligomer of length L=5 occurs seven
times at a given site is p=2.29 x 10-9. Therefore, it is unlikely
that the above listed oligomers occurred by chance. Accumulation
of these oligomers at the endpoints of the sequences can be
explained by cloning effects. Cutting DNA with Bgl II, Bam HI,
Xho II, Sau 3AI and several other restriction enzymes gives the
5' start oligomer 'GATC'. Cutting DNA with Bcl I produces
the 5' oligomer 'GATCA'. We have also observed this effect
in sequences which have nothing to do with immunoglobulins
(see the palindromic hexamer analysis below).

After removing the first and last eight bases (most restriction
enzymes recognize four or six base sites) of each sequence, the
above effect could no longer be seen.
As long as one is not interested in recognition oligomers for

restriction enzymes, it is certainly better for sequence analysis
by any statistical model to remove the first and last eight bases
of each sequence.

Choosing the correct parameters
Given the observed frequencies f of oligomers of length L-2
and L-1 in a sequence S, the expected frequencies E(s) of
oligomers s of length L are calculated in (24) by:

E(s1 s2s3. . .SL) = f(S1S2.*.*SL- )f(S2S3 ...)[S1]
f(S2S3. .SL-1)

This formula is based on a Markov chain of the order k=L -2.
This is not suitable as will be seen later.
The oligomer s = (sIs2 ...so) is assumed to behave statistically

(that means its frequency of appearance is that which is expected
from a random distribution), if Istd(s) <a where

std(sI S2... .SL) = f(s1S2. SL)-E(ss2. .SL) [2]
(E(sIs2... SO)12

std is called the normalized deviation (it gives the number of
standard deviations the observed frequency differs from the
expected frequency). a is the threshold value which depends on

the length of oligomers and the length of the sequences. The
occurrences of oligomers s with std(s) .ae are considered

statistically significant. Such oligomers are potential candidates
for biologically meaningful motifs.
The published models (24,26) and the one described here are

based on a Gaussian distribution and thus are applicable only if
the expected frequencies of oligomers are considerably greater
than one. Furthermore, since the possible number of different
oligomers of a given length increases exponentially with the
length, a greater threshold value a must be chosen for L> 4. For
example, from the 16384 different possible heptamers, about 50
are expected not to fulfil Istd(s) <a by chance for a =3 (at
Markov order k=0).
From the intergral of the Gaussian distribution, it can be

calculated that no heptamers are expected to show Istd(s) 25
by chance. The advantage of choosing a=5 is that statistical
oligomers are eliminated with the disadvantage that some signals
could be lost. For oligomers with lengths between 7 and 10
inclusive, a =5 should be used. For penta- and hexamers a similar
stringency requires that ax=4 and for tetramers ca=3. It is
common to choose the Markov order as k=L-2. This is
acceptable for L <4 but when L >4, this is not appropriate in
algorithm [1]. This is because, for example, when a heptamer
(L=7) occurs very often, the corresponding hexamers (L=6)
and pentamers (L=5) as suboligomers of this heptamer also occur
often, even if they rarely occur outside of the heptamer.
Therefore, the frequency E(s) is overestimated and consequently
the normalized deviation std(s) is too small. Such a heptamer
may show no significant deviation from statistical behaviour even
if it is not statistical.
To show the importance of choosing proper a and k values

we simulated a random sequence S with Markov order (Mo) k=0
consisting ofn= 179951 bases. By using ca=5, k=0 we calculated
that a heptamer must occur about twenty times to give std(s) > 5.
Consequently we modified S by inserting four test heptamers each
twenty times. This was done by randomly replacing different
statistical heptamers with the test oligomers in order not to change
the length of the sequence.
We inserted the following heptamers:

AGCCATC
ATGACGC
GTCATTG
TGACATG

and analyzed this modified sequence S' with the algorithm [1]
and in addition with Mo k=0 to k=4.
The generalized formula is:

E(s1s2.. sL) = f(s .I Sk+ )fS2 Sk+2). .f(sL-k .SL) [3]
f(S2. .. Sk+ 1). f(SL k...SL-1 )

Using this modification with k=0 we obtained, as expected,
51 heptamers with Istd(s) |3. This shows that a=3 is not
stringent enough to eliminate statistical oligomers from the set
of oligomers with nonrandom frequencies:

k=O k=l k=2 k=3 k=4 k=S
for the inserted heptamers:
std(AGCCATC) = 5.28 5.21 5.20 4.99 3.96 1.84
std(ATGACGC) = 6.66 6.50 6.02 5.92 5.16 3.10
std(GTCATTG) = 6.41 6.13 5.97 5.75 4.46 2.42
std(TGACATG) = 6.11 5.77 5.33 4.97 3.47 2.50
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for several statistical heptamers arbitrarily chosen from the 51
heptamers with Istd(s)I > 3 for MO k=0:

std(AATTAAT) =
std(AGATTCC) =
std(CGCACGT) =
std(GTCGGCA) =
std(TGACACA) =

3.32
3.21
4.46
3.16
3.21

3.41 3.64 3.38
3.23 3.33 2.94
4.29 4.23 4.03
3.05 2.87 3.16
2.94 2.89 2.56

2.66
3.03
3.17
2.15
1.01

1.13
1.02
1.76
0.89
1.05

For Markov order k=5 (as used in the model of (24)) all
heptamers behave statistically (Istd(s)I <5) even those which are
not statistical by construction. Only for Mo k< 3 can a significant
deviation from statistical behaviour be seen for all four inserted
heptamers and not for the statistical heptamers.

This effect could be avoided if one could determine the true
statistical frequencies fs of suboligomers for each of the potential
signal oligomers (which is possible only when one already knows
the signals). From f, one could then calculate the expected
frequency E(s) at Mo k=L-2 (which corresponds to a longer
correlation between bases).
For the simulated case we computed the frequencies fs of the

statistical suboligomers of sequence S. With these values we
calculated for all Markov orders the expected frequencies of
oligomers s of the modified sequence S'. The normalized
deviation std is calculated as before in [2] where the expected
frequency E is given by [3] with f replaced by fs
For heptamers calculated with this method (second line, the

first line is calculated as before) we obtained:

k=O k=J k=2 k=3 k=4 k=5

for the inserted heptamers:

std(AGCCATC) =

std(ATGACGC) =

std(GTCATTG) =

std(TGACATG) =

5.28
5.29
6.66
6.66
6.41
6.41
6.11
6.11

5.21 5.20 4.99
5.24 5.37 5.45
6.50 6.02 5.92
6.56 6.26 6.61
6.13 5.97 5.75
6.19 6.17 6.27
5.77 5.33 4.97
5.89 5.64 5.59

3.96
5.66
5.16
6.92
4.46
6.26
3.47
5.02

1.84
5.75
3.10
7.75
2.42
6.61
2.50
6.63

This method is not ideal for real sequences because the signals
are unknown and it is not clear which sequences should be used
for calculating the suboligomer frequencies. Therefore, it is
necessary to turn to smaller Markov orders for calculating the
expected frequencies E(s).

Like Brendel et al.(24) we also analyzed hexamer frequencies
for phage T7 in order to show the effect of improper k and a
values. In (24) they used Mo k=4, a=3, we use the more
stringent conditions of Mo k=2, a=4. The results of both
methods are completely different (data not shown).

The improved statistical method
Taking into account the importance of k and a as shown above,
we then extended the previously published model of Pevzner et
al.(26) to the calculation of the variance of oligomer frequencies
in several linear sequences with unequally distributed bases and
Mo k .0. In Pevzner et al.(26) a formula for one linear sequence
with equally distributed bases and Mo k=O is given. In real
databases there are many short sequences and therefore the
method has to be extended to apply it for real databases.

Previously (26), the normalized deviation std was computed by:

std(s1S2. .SL) = f(s1S2. ..SL)-E(s1S2 ... SL)
(V(sIS2 ...SO)2

[4]

with E(s) from Brendel et al. (24).
The difference between the two previous models (24) and (26)

is, that oligomer frequencies in the model given by the latter are
not assumed to be Poisson distributed. As the oligomers overlap,
they are not independent and therefore this is certainly a better
analysis than the earlier model (24).

In the following, the formula for the variance V is taken from
Pevzner et al.(26), corrected for several typographical errors,
and extended.

In (26) an autocorrelation polynomial
L-1

KS(x) =W krxr
r=O

with the coefficient

for the same randomly chosen statistical heptamers shown above:

std(AATTAAT) =

std(AGATTCC) =

std(CGCACGT) =

std(GTCGGCA) =

std(TGACACA) =

3.32
3.32
3.21
3.22
4.46
4.46
3.16
3.16
3.21
3.21

3.41 3.64 3.38
3.39 3.61 3.31
3.23 3.33 2.94
3.23 3.28 2.89
4.29 4.23 4.03
4.31 4.23 3.99
3.05 2.87 3.16
3.06 2.88 3.17
2.94 2.89 2.56
3.01 3.01 2.83

2.66
2.68
3.03
3.05
3.17
3.23
2.15
2.10
1.01
1.33

1.13
1.19
1.02
1.02
1.76
1.83
0.89
0.91
1.05
1.05

Obviously, now for all Mo k=0 to k=5, the inserted heptamers
do not behave statistically because std(s) > 5 in all orders. As
expected for the statistical heptamers, the values are essentially
the same.
These examples show that only in ideal cases where one already

knows the nonstatistical signals is the statistical analysis of
sequences relatively independent of k for 0 < k c L-2. This is
because one can calculate the expected suboligomer frequencies
from reference sequences where the signal oligomer is not a
signal.

1, the first and last L- r bases agree
0, otherwise

was introduced. The frequency of an oligomer s is counted by
the random variable X:

X = Ei with x = , oligomer is beginning at position i
0, otherwise

One circular sequence with unequal base distribution and Mo
k#0
First we consider a circular sequence. The mathematical
expectation and variance are calculated by:

E(xi) = p(xi=1) = Ps;
n

EX = EEx; = nps
i= 1

[5]

V(xi) = E(xi2)-E2(xi) = Ps(l-Ps)
n

VX = EX2 -E2X = E (E(xixj)-E(xi)E(xj)).i,j=1
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where for unequally distributed bases and Mo k * 0 the
probability p, is given by:

L-k
PS P(SIS2 ..s.) II P(SO+kISO+k-I...SO),

(3=1
where p(unlunlI,unn2...u1) is the probability of state un given
Un- i...ui-

Denoting by d(i,j) the shortest distance between position i and
j, the variance can be devided into the following three terms:

n
VX = E (E(xixj) -E(xi)E(xj)) +

i,j=I
d(i,j)>L

n

E (E(ixj) -E(xi)E(xj)) +
i,j=1

d(i,j)=0
n
E (Exixj)-E(xi)E(xj)).i,j- 1

O<d(i,j)<L

(a)

(b)

(c)

For Mo k* 0, oligomers which do not overlap can be correlated
and therefore it is not apparent that term (a) may be neglected.
We suggest later that term (a) can be neglected. Contrary to
Pevzner et al. (26), we have included the case where d(i,j) =L
in term (c).
Term (b) yields:

n
EV(x1) = nps(l-ps).

As

E(x1xj) = f Ps IP(S(+kIS+k-l ...so); krl=I
0; otherwise

we obtain for term (c):

n

E (E(Xixj) -E(xi)E(xj)) = nps(2Ks-2 -2Lps)
0< d(i,j) < L

[6]

with the modified autocorrelation polynomial:
L r

KS = 1 + krIlIIPp(Sf+kIS3+k-1 ... S,),r=1 b=I

where for all s indices -y > L, -y has to be replaced by 'y -r. The
variance is:

VX = np.(2Ks-1-(2L+l)p5). [7]

According to this model we calculated the tetramer std values
of phage T7 and compared this to the values obtained previously
(24,26)(Table 1). The effect of considering d(i,j)=L on std is
minimal. Since the contribution from term (a) is expected to be
at most of the same order of magnitude, it seems plausible that
term (a) may be neglected.

In the databases, many primarily short sequences with
unequally distributed bases and Mo k. 0 are stored. The model
above has to be extended to accomodate this.

Table 1. Tetramers of phage T7 with Istd(s)I >3, by model of (24)(std-(24)),
model of (26) (std-(26)) and model of (24) with extension d(i,j)=L (std):

std-(24) std-(26) std

GGTT -3.2302 -3.2918 -3.2833
GAGC -3.3968 -3.4467 -3.4499
GATG 4.6592 4.6421 4.6386
GATT 3.0101 3.0504 3.0481
GATC -11.3559 -11.4982 -11.5082
GTTC 4.2241 4.2954 4.2960
GCTG 5.0594 5.0503 5.0429
GCTT -4.0502 -4.1236 -4.1217
AGCG 3.0769 3.1095 3.1087
AGCT -5.4575 -5.5663 -5.5821
AAAA -3.2854 -2.7182 -2.7208
AATT -3.8376 -3.8789 -3.8764
AATC 5.3794 5.4336 5.4294
TGAA -3.6421 -3.7294 -3.7340
TAGC 3.0981 3.1172 3.1138
TATC 3.1762 3.2119 3.2104
TACG 3.0363 3.0766 3.0727
TTGA 3.1676 3.2241 3.2257
TTTC -3.2535 -3.2803 -3.2787
CGGT 3.2634 3.2985 3.3003
CGTC -3.2858 -3.2807 -3.2789
CGCG -3.8523 -3.7018 -3.7019
CGCT 3.9327 4.0009 4.0038
CAGG -3.0007 -3.0374 -3.0391
CAAT 3.0169 3.0533 3.0527
CATA -3.2940 -3.3224 -3.3212
CATC 3.9302 3.9153 3.9143
CTAG -3.9564 -3.9912 -3.9899
CTTT 4.5553 4.5947 4.5930
CCTG -4.5076 -4.5770 -4.5815
CCTT 3.8355 3.8793 3.8730
CCCT 3.4521 3.4768 3.4760

One linear sequence with unequal base distribution and Mo
k.O
For a linear sequence with unequal base distribution, Mo k= .0,
d(i,j)=L considered in Term (c'), the variance is:

n-L+ I
VX = E (E(xixj) -E(xi)E(xj)) + (a')

i,j=I
d(i,j) > L

n-L+I
E (E(xixj) -E(xi)E(xj)) +

d(i,j) =O
n-L+l

i, (E(xixj)-E(xi)E(xj)).i,j= L
<d(i,j) <L

(b')

(c')

Term (a') is neglected for the same reason as before.
Term (b') yields:

n-L+l
FaS (E(xixj)-E(xi)]

d(i,j)=O

For term (c') we obtair
n-L+l

,E (E(xixj)-E(xi)E
i,j=I

O<d(i,j)<L

IE(xj)) =

n-L+I
i V(x1) = (n-L+l)p,(l-p,),

i=l
I:

E(xj)) =

n-L+l L n-L+l
iEl rSl j (E(Xixj)-E(xi)E(xj)) =
i=l r=l j=I

d(ij)=r
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n-L+1 L
F, E 2(E(xixj) -E(xi)E(xj)) +
i=1 r=1
r<minji,n-i-L+2j

n-L+1 L

(E(Xixj) -E(xi)E(xj))=
i=l, r=I
r >minji,n-i -L+2J

n-L+1 L
(n-L+ l)p,(2K, -2 -2Lp,)- 1 (E(xixj) -E(xi)E(xj)) =

r> minli,n-i-L+21

(n-L+ l)p,(2K5-2-2Lp,) -
(L r

Ps 2 E rkrrI[P(s3+kIsO+k_l... so) -L(L+1)PS
r=1 f3=1

by using equation [6].
For one linear sequence of length ni the expected frequency

and the variance is:
n,-L+1

EXi = S E(xi) = (ni-L+ 1)p [8]

VXi = (ni-L+ 1)p,(2Ks-1-(2L+ l)ps) -

L r

2psE rkrf lp(sS+kIsSO+k. ..s.S) + L(L+l)Ps2. [9]
r=1 13=1

Several linear sequences with unequal base distribution and
Mo k*O
As the sequences are independent, we obtain for the expected
frequency and the variance of N linear sequences with total length
m:

N
EX = S EX,

i=1

N
= (n1-L+I)p, = (m-N(L-1))p5,

i=l
[10]

VX =(m-N(L- 1))p,(2K- 1 -(2L+ l)p,)-

L r

2Np,Erkr IIP(S0+kIS±k-1 ... So3) + NL(L+ I)ps2.

Verification of the method
With this statistical model we examined the 797 E.coli (about
1.2 x106bp) sequences present in the GenBankTM database
(release 60) with respect to the occurrence of all possible
hexameric palindroms. The result using Mo k=2 and a=4 are
shown in Table 2. As also seen previously (22), there is a general,
obvious underrepresentation of hexameric palindroms in E.coli
sequences. One important reason for this could be that many such
hexamers are recognition signals for restriction endonucleases.
This would predict that palindromic hexamers not recognized by
any known restriction enzymes should behave statistically. On
the average this is indeed the case (see Table 3) where the average
score of std(s) for nonrestriction site hexamers is -2.12 (well
within the -4 s a 4 boundary chosen) and for restriction site
hexamers the average score of std(s) = -5.26. The
underrepresentation of restriction site hexamers in E.coli
sequences is even more striking if only those hexamers are
examined for which a corresponding enzyme in E.coli has been

Table 2. Recognition hexamers for restriction enzymes and palindromic hexamers
not recognized by any known restriction enzyme

std(GAATTC)
std(CACGTG)
std(GACGTC)
std(TACGTA)
std(AAGCTT)
std(CAGCTG)
std(GAGCTC)
std(AATATT)
std(CATATG)
std(GATATC)
std(ACATGT)
std(CCATGG)
std(GCATGC)
std(TCATGA)
std(CCCGGG)
std(GCCGGC)
std(TCCGGA)
std(ACGCGT)
std(CCGCGG)
std(GCGCGC)
std(TCGCGA)
std(ACTAGT)
std(CCTAGG)
std(GCTAGC)
std(TCTAGA)
std(AGATCT)
std(CGATCG)
std(GGATCC)
std(TGATCA)
std(AGCGCT)
std(GGCGCC)
std(TGCGCA)
std(AGGCCT)
std(CGGCCG)
std(GGGCCC)
std(TGGCCA)
std(AGTACT)
std(GGTACC)
std(GTATAC)
std(ATCGAT)
std(CTCGAG)
std(GTCGAC)
std(TTCGAA)
std(ATGCAT)
std(CTGCAG)
std(GTGCAC)
std(ATTAAT)
std(CTTAAG)
std(GTTAAC)
std(TTTAAA)
std(AAATTT)
std(CAATTG)
std(TAATTA)
std(AACGTT)
std(TAGCTA)
std(TATATA)
std(ACCGGT)
std(CGCGCG)
std(CGTACG)
std(TGTACA)
std(ATATAT)
std(CTATAG)
std(TTATAA)
std(TTGCAA)

= -5.14*
-12.63
-0.05
- 1.51*
-6.44*
-10.15

8.05*
8.28

-4.33
9.33*

= -0.47
= -6.56
= -12.70
= -2.64
= -0.52
= -19.71*
= 1.61
= -3.49
= - 14.55*
= -6.69
= -0.71
= 0.62
= -4.51
= -6.24
= -5.46
= -4.26
= -5.07
= -6.47
= -5.16
= -8.08*
= -19.08*
= -3.24
= -1.96*
= -18.48*
= - 10.25
= -13.11
= -3.16

-8.44*
= -7.27
= -1.05
= -4.22
= -2.89
= -5.04
= -8.12*
= -11.26*
= -4.75
= 6.41
= -3.60
= 4.04
= -5.99
= -4.33
= -1.66
= 1.46
= -0.36
= 2.58
= -2.91
= 3.45
= -8.65
= -7.19
= -0.72
= -2.86
= 0.31
= -5.04
= -3.70

EcoR I
PmaC I
Aha II, Aat II
SnaB I
Hind HI
Pvu II, NspB II
Sac I, Ban II, HgiA I, Bsp 1286
Ssp I
Nde I
EcoR V
Afl HI, Nsp 7524 I
Nco I, Sty I
Sph I, Nsp 7524 I
BspH I
Xma I, Ava I, Sma I
Nae I
BspM II
Mlu I, Afl III
NspB II, Sac II, Ksp I
BssH H
Nru I
Spe I
Avr II, Sty I
Nhe I
Xba I
Bgl II, BstY I
Pvu I
BamH I, BstY I
Bcl I
Eco 47 Im, Hae II
Ban I, Nar I,Aha II, Bbe I, Hae II
Fsp I
Stu I
Eag I, Eae I, Gdi II
Apa I, Ban II, Bsp 1286
Eae I, Bal I
Sca I
Asp 718, Ban I, Kpn I
Acc I, Xca I
Cla I
Xho I, Ava I
Sal I, Acc I, Hinc II
BstB I
Nsi I
Pst I
ApaL I, Sno I, Bsp 1286, HgiA I
Ase I
Afl II
Hpa I, Hinc II
Dra I, Aha III

*Recognition hexamers for restriction enzymes isolated from E.coli (28).

identified. Then the average score of std(s) = -8.68 (Table 3).
For the results shown we did not remove the first and last eight
nucleotides of each sequence (see 'Border effect' described above)
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Table 3

Frequency
Number rare random frequent average
of sites (std< -4) (-4<std<4) (std >4) score

all hexameric 64 35 25 4 -4.58
palindroms
restriction 50 31 15 4 -5.26
site hexamers
nonrestriction 14 4 10 0 -2.12
site hexamers
sites recog- 14 11 2 1 -8.68
nized by E.coli
restriction
enzymes

since this could lead to an underrepresentation of some restriction
enzyme sites. In fact, analysis of E.coli sequences with and
without these end nucleotides had a considerable effect only on
hexamers corresponding to those restriction enzymes often used
for cloning (e.g. EcoR I, Hind 111, BamH I). We assume these
end hexamers represent natural restriction sites rather than being
the result of synthetic linker addition during cloning.

It should be kept in mind that std(s) <a does not imply that
the oligomer s is not biologically meaningful. The frequency with
which an oligomer appears is determined by many biological
necessities. For example, superimposed on the general reduced
frequency of hexameric restriction site palindroms described
above is a strong bias against those hexamers with a high G/C
content. Since G/C rich sequences would be expected to form
more stable duplexes, the paucity of G/C rich hexamers may
reflect the need for DNA strand separation in such processes as
chromosomal replication and RNA transcription. Oligomer biases
correllating with codon usage have also been reported (22).

DISCUSSION
In this paper we derived a rigorous statistical model for analysis
of nucleic acid sequences. Our method represents an improvement
of previously published algorithms (24,25,26). We are able to
analyze databases of many linear sequences with unequal base
frequencies and Markov order k* 0. These are necessary
prerequisites to analyze existing sequence databases.
We also demonstrate by using simulated sequences that

choosing appropriate values for Markov order k and threshold
value a is essential to obtain correct results. As the bases are
correlated, it is surely not optimal to take Markov order k=0.
On the other hand, we showed that the maximal possible value
k=L-2 for the Markov order is not appropriate either. For all
oligomers with length L>4 it is the best compromise to choose
Markov order k=2. In this way, correlation between bases is
considered without being so stringent that, as shown in the
simulation, significant oligomers remain undetected. When L <4,
then k=L-2 can be used. A completely different algorithm
would be required for Markov order k=L-2 for all L. However
it is not clear that this would give more accurate results than our
model.

In contrast to another method (24), we adapt the threshold value
to the length of the oligomers. As the oligomer increases in
length, the absolute number of possible oligomers of this length
also increases. Thus, for a given a, longer oligomers are expected

statistically to have more members which fall outside the threshold
boundary even though they are randomly distributed. We show
in the results that for a given oligomer length, increasing a is
equivalent to increasing the stringency.
The extended method was verified by the investigation of the

frequencies of hexameric palindroms in E.coli nucleic acid
sequences. As reported by others (21,22), we find that in general
they are underrepresented. We also find, as shown in Tables 2
and 3, that most hexamers which are restriction enzyme
recognition sites are significantly underrepresented in E.coli
sequences. This bias is even more striking when only recognition
sites for restriction enzymes known to exist in E.coli are
considered. In contrast, non-restriction site palindroms are not
significantly under- or overrepresented.

Since some databases contain duplicated sequence entries we
checked the effect that duplications would have on our results.
The std-values were shifted only by about 5% if one sequence
of approximately 700bp was copied five times within the
1.2 x106bp. The experiment was repeated for three different
sequences with the same result. Therefore we assume that our
results are not significantly influenced by possible duplicated
sequences in the database.
There is one other phenomenon which requires attention. We

call it 'border effect'. The very first and last oligomers of the
sequences are heavily biased. This is probably due to cloning
effects since many of the sequences in data banks are determined
from cloned fragments generated by restriction enzyme digestion.
Indeed, when we examined all E.coli sequences present in the
GenBankTM database both with and without the last 8 nucleotides
at each end of the sequences, the only major difference in the
calculated palindromic hexamer frequencies corresponded to
those hexamers recognized by restriction enzymes frequently used
for cloning (e.g. EcoR I, Hind II, BamH I). Thus, when
restriction enzyme recognition sites are not being investigated,
it is generally better to remove the first and last eight bases of
each sequence file before one starts with statistical investigations.
With the statistical model presented here, oligomers can be

found whose frequencies show a significant deviation from
statistical (random) behaviour. These oligomers are candidates
for biologically relevant patterns. Caution must be exercised with
this method however for long oligomers or small sequence
databases since the expected frequencies of oligomers E(s) is not
substantially greater than one. For such cases we are currently
developing a simpler but less informative approach involving
calculating whether the oligomer occurs at all.
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