Supplementary Figure 1.

RNA binding curve to estimate affinity of MBP-AtHCF152 for its binding site. Binding reactions were performed with an RNA oligonucleotide harboring the AtHCF152 binding site and protein at the concentrations indicated. Bound (B) and unbound (U) RNAs were separated by native gel electrophoresis. These results show that the K_d under these conditions is ~ 1 nM, the concentration at which half maximal binding is observed.

Supplementary Figure 2.

Barley transcriptome data documenting sRNAs at sites of action of genetically-characterized PPR proteins for which binding sites have not been demonstrated. RNA termini that fail to accumulate in the absence of the indicated PPR protein are indicated. Both the annotated and newly proposed start codon for *ndhB* are shown. The processed *ndhB* 5'-ends are heterogeneous; the most upstream end was arbitrarily labeled as the 5'-end. *rps7* 3'-ends were mapped by 3'-RACE and are annotated with the number of clones representing each position.

Supplementary Figure 3.

Supporting data for sRNAs that correlate with processed 5'-termini and summarized in Table 2. The aligned sequences come from barley (Hv), maize (Zm), rice (Os), poplar (Pa), Arabidopsis (At), and tobacco (Nt). The most stable secondary structure predicted by Mfold is shown for each sRNA. 3'-termini in several of the regions depicted were mapped by 3'-RACE; these are marked by vertical arrows under the sequence histograms, annotated with the number of clones representing each position.

(A) sRNAs mapping in 5'-UTRs.

(B) sRNAs matching processed 5'-termini that map within upstream open reading frames. Sequence alignments are not shown because these sequences are subject to additional constraints. The secondary structures of the *psbC* and *ndhK* 5'-UTRs (panels to the right) show that the sequences at the immediate 5'-end (i.e. matching the sRNA) are predicted to bind the downstream ribosome binding region if not sequestered by a protein.

(C) sRNA mapping at the 5'-end of the second of two fragments of *rps12*-intron 1.

rps16 5' sRNA dG= -5.40 CAAAA Hv Zn Os At TEX+ Hv Zn Os At TEX-...... (31) ATG rps16 sRNA rps4-ycf3 intergenic sRNA dG = -1.80AAAGGTAA TFX+ 1.5 4. Hv Zn Os Pa At Selat 3.0 TEX-1.5 11 ATG ycf3 rps Ť sRNA 11 ycf3 5 psbB 5' sRNA Hv Zm Os Pa At TEX+ 0.3 Relative: Hv Zm Os Pa At sRNA

Supplementary Figure 3A part 1

Supplementary Figure 3A part 2

ACT rps12 exon 2

Supplementary Figure 4.

Supporting data for sRNAs that map in 3'-UTRs and summarized in Table 3. The aligned sequences come from barley (Hv), maize (Zm), rice (Os), poplar (Pa), Arabidopsis (At), and tobacco (Nt). The most stable secondary structure predicted by Mfold is shown for each sRNA. 3'-termini mapped by 3'-RACE are marked with vertical arrows, and annotated with the number of clones corresponding to each position.

(A) sRNAs proposed to be binding sites for PPR-like proteins that stabilize 3'-termini. The Arabidopsis ndhJ and ycf3 sRNAs are underlined separately because they are conserved in sequence but not position with those in barley.

(**B**) sRNAs mapping in 3'-UTRs for which the evidence is less strong of a role as a 3'-stabilizing element.

Supplementary Figure 4A part 1

Supplementary Figure 4A part 2

Supplementary Figure 4B dG= -11.80 rps7 3′ Hv Zm Os Pa At 0.2 0.1 TEX+ Relative s AAGAGGAA AAGAGGAA AAGAGGAA TEX-Hv Zm Os Pa At 0.2-AAAA AAAAA 0.1 A AAAGA<mark>C</mark>CAA rps7 TA 115 (AYG ndhB sRNA sRNA petD 3' dG= -1.00 Hv Zm Os Pa At Nt CCCC G CATTT GTÁCCA ATGCCA GTCCCA Hv Zm Os Pa At ATAGAT ATAGAT G-GGTT ATAAAT TT C A CTA C**G**A ATT CTA TEX+ sRNA TEX-4 petD TAG JATACCTAAAATCCATTTTATTATTATTATGATCCATTTCGCGAAAATATAGATTGTACCAAAGAT ↑ petD 3':2 ↑ 4 sRNA

Supplementary Figure 5.

Supporting data for sRNAs that map near transcription start sites (summarized in Table 4). Alignments and RNA structure analyses are as described for Supplementary Figure 4.

Supplementary Table 1. Ends mapped by circular RT-PCR (cRT-PCR) and primer extension (PE) in Zea mays.

genes	Primer	Primer sequence	5'end	3'end	clones ¹
psbK	psbK_FP	5' GGATGTTATGCCTGTCATACCTGTACTC 3'	(6989)-	(7428)-	9
cRT-PCR	psbK_RP	5' GGCGAAGAAAAAGCTAGTCGGACAAAG 3'	TGATCATTACATGG <u>AATT</u>	CCAAAAAAAAAAAT <u>GGAT</u>	
psbB	psbB_FP	5' CAGACTTGGATGCTCAAGTGGAATTTGG 3'	(70648)-	(72363)-	8
cRT-PCR	psbB_RP	5' GCATTATATGCACCGAAAGCAATCGACC 3'	TTCCAATGCGAT <u>AAAA</u>	GGTGTGGAAGTTAT <u>AATT</u>	
atpl	atpl_FP	5' TGCAACGTTAGCCGCAGCCTATATAG 3'	(32702)-	(33730)-	7
cRT-PCR	atpl_RP	5' GTGTTGCCCTACTTCTACACCCGAT 3'	GATGTGATTTCTTG <u>GTAT</u>	TATATGCATTCAGG <u>GGGG</u>	
psbC	psbC_FP	5' ATGCAGGAAGAGCCCGAGCTGCT 3'	(10074)-	(11565)-	10
cRT-PCR	psbC_RP	5' TGGTTTCTTGGTCACGACCAGCTAA 3'	CAGCTCAGGATCAG <u>CCTC</u>	CCATCTAGCCGAGC <u>CATT</u>	
ndhA	ndhA_FP	5' CCCAGGATGAGAATGGATCAGTTATTAA 3'	(116524)-	(114292)-	10
cRT-PCR	ndhA_RP	5' GGGTAGAATCCATATAAGTCCGTAGATT 3'	AAATTGGCTGATAT <u>CATG</u>	AGAGAAAGAAACA <u>TACC</u>	
clpP	clpP_FP1	5' CGCGAAATGATCACAAGGGTT 3'			
cRT-PCR	clpP_FP2	5' GAAGACATGGAAAGGGATGTTT 3'			
	clpP_RP	5' CGCAACGAATCTCTTGACCTAA 3'	Described in Figure 1		
rps12	Rps12_RP	5' CCTTAAGCGCGGCCGATTTTCTAGC 3'			
PE					

¹ Number of clones out of 10 in which the ends mapped to the underlined 5' and 3' sequence.

Supplementary Table 2. Primers used for 3' RACE analysis of barley chloroplast 3' termini.

Name	Sequence (5'-3')	Target	Description
3R_1	CACCACTTCCCGTTCGACTTG	rrn16	cDNA synthesis, 1st PCR rrn16 (linker) specific primer
3R_2	CCGTTCGACTTGCATGTGTTA		2nd PCR rrn16 (linker) specific primer
PZ	GCTGAAGCCGCTATTGGACT		1st PCR target specific primer
R39	TTGGCTAATTCGAAATCGTCTG	ndhE	2nd PCR target specific primer
R27	AATTGCGGAAGCTTGGTTTG		1st PCR target specific primer
R28	GCGCTTACTCCGGGAAATTA	ycf3	2nd PCR target specific primer
R29	TGATAATCATCCGCGCCTTA		1st PCR target specific primer
R30	TTTTCCTAGATGAAACGGAATACCT	ndhJ	2nd PCR target specific primer
R31	TTTCCTTGAAAAGGGTGCTCA		1st PCR target specific primer
R32	AAGGGTGCTCAACCGACAAG	rps16	2nd PCR target specific primer
R33	GCCCAGTAGCTACGACCGTTT		1st PCR target specific primer
R34	TGGAGCAACACTACCCATTGA	petD	2nd PCR target specific primer
R35	TCCTTCCGTCCCAGATTGTT		1st PCR target specific primer
R36	TGGGTTTAAATAAATTGGATCTTGG	trnQ	2nd PCR target specific primer
R37.1	CTCGGGGGTTCCCTAGTTCT		1st PCR target specific primer
R38	TTCGTGTCCAAGCAGAAGGA	rps4	2nd PCR target specific primer
R42	TGGAAATAGCATGGAATAAGGTTTG		1st PCR target specific primer
R43	CCTATTCATGGGGATTCCGTA	rps7	2nd PCR target specific primer
R44	GTCAGCAGACGAAGCCAAAG		1st PCR target specific primer
R45	TCCGGAAATGTTTAAGGATTGG	clpP	2nd PCR target specific primer
M13_rev	GAGCGGATAACAATTTCACACAGG	pGEM®T	Sequencing of 3'-RACE products cloned into pGEM®T vector