Supporting Information

Processive Carbohydrate Polymerases Mediate Bifunctional Catalysis Using a

Single Active Site

John F. May, Matthew R. Levengood, Rebecca A. Splain, & Laura L. Kiessling

	6	
	GenBank	
	Accession Number	
	or NCBI Reference	
Abbreviation	Sequence	Source of sequence (bacterial species)
Nbr	BAF46769.1	Nocardia brasiliensis
Nf1	YP_116420.1	Nocardia farcinica IFM 10152
Rr1	YP_704064.1	Rhodococcus sp. RHA1
Ser	YP_001107843.1	Saccharopolyspora erythraea NRRL 2338
Bde	ZP_02917795.1	Bifidobacterium dentium ATCC 27678
Ban	ZP_02964173.1	Bifidobacterium animalis subsp. lactis HN019
B11	NP_695433.1	Bifidobacterium longum NCC2705
Mth	NP_218325.1	Mycobacterium tuberculosis H37Rv
Mtc	NP_338467.1	Mycobacterium tuberculosis CDC1551
Mma	YP_001853631.1	Mycobacterium marinum M
Mul	YP_908340.1	Mycobacterium ulcerans Agy99
Mle	NP_301191.1	Mycobacterium leprae TN
Mav	YP_879503.1	Mycobacterium avium 104
Мар	NP_959146.1	Mycobacterium avium subsp. paratuberculosis K-10
Mjl	YP_001073654.1	Mycobacterium sp. JLS
Mmc	YP_642179.1	Mycobacterium sp. MCS
Mva	YP_956420.1	Mycobacterium vanbaalenii PYR-1
Mgi	YP_001132430.1	Mycobacterium gilvum PYR-GCK
Msm	YP_890616.1	Mycobacterium smegmatis str. MC2 155
Mab	YP_001700925.1	Mycobacterium abscessus
Rr2	YP_704009.1	Rhodococcus sp. RHA1
Nf2	YP_116383.1	Nocardia farcinica IFM 10152
Cur	YP_001799546.1	Corynebacterium urealyticum DSM 7109
Cje	YP_249900.1	Corynebacterium jeikeium K411
Cg1	NP_602073.1	Corynebacterium glutamicum ATCC 13032
Cg2	YP_227122.1	Corynebacterium glutamicum ATCC 13032
Cg3	BAC00276.1	Corynebacterium glutamicum ATCC 13032
Cgr	YP_001139691.1	Corynebacterium glutamicum R
Cef	NP_739324.1	Corynebacterium efficiens YS-314
Cdi	NP_940506.1	Corynebacterium diphtheriae NCTC 13129
Se1	YP_001107844.1	Saccharopolyspora erythraea NRRL 2338

 Table S1 GlfT2 homologs used in the multiple sequence alignment.

Se2	YP_001102444.1	Saccharopolyspora erythraea NRRL 2338
Rsa	YP_001624767.1	Renibacterium salmoninarum ATCC 33209
Afb	YP_832172.1	Arthrobacter sp. FB24
Aau	YP_948391.1	Arthrobacter aurescens TC1
Kra	YP_001363614.1	Kineococcus radiotolerans SRS30216
Krh	YP_001854751.1	Kocuria rhizophila DC2201
Njs	YP_922603.1	Nocardioides sp. JS614
Cms	YP_001709406.1	Clavibacter michiganensis subsp. Sepedonicus
Cmm	YP_001221762.1	Clavibacter michiganensis subsp. michiganensis NCPPB
		382
B12	NP_695432.1	Bifidobacterium longum NCC2705
Sen	ZP_02701557.1	Salmonella enterica subsp. enterica serovar Newport str.
		SL317
Seh	ZP_02665507.1	Salmonella enterica subsp. enterica serovar Heidelberg str.
		SL486
Sew	ZP_02832148.1	Salmonella enterica subsp. enterica serovar Weltevreden
		str. HI_N05-537
Sep	YP_001589014.1	Salmonella enterica subsp. enterica serovar Paratyphi B
		str. SPB7
Ses	ZP_02663925.1	Salmonella enterica subsp. enterica serovar
		Schwarzengrund str. SL480
Sev	ZP_02706803.1	Salmonella enterica subsp. enterica serovar Virchow str.
		SL491
Sej	ZP_02653520.1	Salmonella enterica subsp. enterica serovar Javiana str.
		GA_MM04042433
Rba	ZP_01014392.1	Rhodobacterales bacterium HTCC2654
Gox	YP_191889.1	Gluconobacter oxydans 621H

Nbr	256	GGFT	RGLYEVS	AAN	EH	ADVII	LMDDD I	LCEPE	TVV	LNAFANM	rv-e <mark>p</mark> tlv	304
Nf1	254	GGFT	RGLYEVS	AVN	EH	IAD <mark>VII</mark>	LMDDD I	LCEPE	TVL	LNAFANL	rv-e <mark>p</mark> tlv	302
Rr1	250	GGFT	RGMYEVS	GIN	EH			LCEPE	SIL	MNAFANV	rt-e <mark>p</mark> tlv	298
Ser	272	GGFS	RGLAESV	RCR	<mark>G</mark> R	VNTLI		RLEPE	TLS	LMTFAAC	FA-EPSLV	320
Bde	298	GGFS	RGMYETI	KAGA-		STLI		ISEPE	AIL	SMOFADY	r <mark>k</mark> -kptiv	346
Ban	296	GGFS	RGMYETI	KAGT-		AHTLI		ISEPE	SII	AVOFADY	CN-TPTIV	344
BII	259	GGES	RGMFETV	KAGK-				TSEPE	STL	AVHFADY	TV-RSALV	307
Mtn	234	GGVS	RVMVEAT	KN	т <mark>р</mark> С	OOTLE		RLEPD	STL	WI.AMHRE	K-APMLV	282
Mr D	234	GGYS			TDC		TDDDM	RLEPD	STL	VLAMHRE	AK-APMLV	282
Mul	232	GGVS	RVMYEAT				TODOM	RTEPD	STL	VI.AMHRE	AK-SPMLV	280
Mle	232	GGVS	RUMVEAT	KN		00TL	TUDUM	RTEPD	STL	WI.AMHRE	AK-SPMLV	280
Mav	235	CCVS	RUMVEAT	KN			TODOT	RTEPD	STL	WI.AMHRE	K-SPMLV	283
Мар	229	GGYS	RVMYEAT	KN	TDC		TDDDM	RTEPD	STL	VLALHRE	AK-TPMLT	277
Mjl	232	GGYS			TDC		TDDDM	RTEPD	STL	VI.ALHRE		280
Mmc	245	GGYS	RVMVEAT			EOTL	TODOM	RVEPD	SVL	ALALNEF	K-SPMLV	293
Mva	245	GGYS			TDC	EOTLE	TDDDM	RVEPD	SVL	ALALNE	AK-SPMLV	293
Mgi	254	GGYS	RVMYEAT		TDC	EOTLE	TDDDM	RTEPD	STL	ALALNE	AK-VPTLV	302
Msm	247	GGVS	RUMYEAT			EOTL	TODOM	RVEPD	STL	ALALNRE	K-VPTLV	295
Map Dr2	245	GGVS	RUMVEAT	KN		EOTL	TUDUM	RTEPD	STL	ALAMNRE	AK-SPTLV	293
RLZ Nf2	245	GGVS	RVMYEAT	KN		EOTL	MDDDT	RTEPD	STL	ALALNRE	AK-SPMLV	293
Cur	246	GGVS	RTMVEAT	KT		OHTLE	TODOM	ETEPD	STL	ALAMSRE	AK-TPMLV	294
Cie	245	GGYS	RVMYEAT	KT		EVIVE	TDDDM	ETEPD	STL	ALAFARE	AK-SPVLV	293
Cg1	269	GGVS	RTMYEAR	HAERG	гтя	PETL	MDDDT	OTEPD	SVI.	ST.AAARV	AR-SPMLT	320
Cg2	276	GGYS	RTMYEAT	HEERG	гтя	PYTL	MDDDT	ATEPD	SVL.	ALAAARY	AK-SPMLT	327
Cg3	250	GGYS	RTMEEAT	GGVDG	KGEAGAAKS	PYTL	MDDDT	ATEPD	SVI.	ALOVARY	AK-SPTLV	307
Cgr	253	GGYS	RIMFEAL	GGVDG	KGEAGAAKS	PYTLY	MDDDT	ATEPD	SVL	ALOVARY	AK-SPILV	310
Cef	243	GGYS	RIMFEAL	GGVDG	KGEAGAAKS	PYIL	MDDDT	ALEPD	SVL	ALOVARY	AK-SPILV	300
Cal	243	GGYS	RIMFEAL	GGVDG	KGEAGAAKS	PYIL		ATEPD	SVL	ALOVARY	AK-SPILV	300
sei sei	285	GGYS	RIMFEAL	GGVDG	r geagasks	PYIL		AIEPD	SVL	ALOAARY	AK-SPMLI	342
Rsa	242	GGYS		GGVDG	TKPAGAAOS	PYIL	MDDDT	ATEPD	SVL	ALOVARY	AK-SPILV	299
Afb	263	GGYA		TT	TDC	EOIL	MDDDV	OLEPD	TIL	ALAFSRE	AR-OPMLV	311
Aau	260	GGEG		YN	SDA	EOVMI	IDDDI	ALEPD	GVL	ANAFARA	SS-OPVIV	308
Kra	265	GGFS	RGMLEAV		S		LDDDV	MVEPE	SINE	LLTFAEL	CK-KPTIV	312
Krh	271	GGFA	RGMFEAV	ENG	\$	DYVLI	MDDDT	VVEPE	SII	LLTFADR	CK-TPTIV	318
Njs	271	GGFA	RNMYEMV	VSDK-	s	DYVMI	LDDDI	ELETE	GVM	AVAFADL	CR-KPTIV	319
Cms	268	GGFA	RGMFEAV	RGER-	S	KYVLI		NIEPE	GIVE	AVOFGDA	CR-KPTLV	316
Cmm	236	GGFA	RGMYEAS	REGG-	s	RYVMI	LDDDV	EVHPE	SIL	AVRFGDF	AR-HNTIV	284
BIZ	264	GGYA	RGOLESV	RKGT-	A	TYTM	MDDDI	VCEPE	GVIF	AITFADL	AR-RPTIV	312
Seh	271	GGFS	RGMYETI	KEGA-	S	DYVL	MDDDI	TLEPE	SIR	AVKFADY	AR-TPTIV	319
Sew	271	GGFS	RGMYETI	KEGA-	S			TLEPE	SIR	AVKFADY	AR-TPTIV	319
Sep	248	GGFA	RGMYEVE	HHGE-	s	GYALI	LDDDT	VLEPE	SVSF	AIAFANH	CE-KPTLV	296
Ses	213	GGFM	RGLIEAG	KIN	DI	KHVI	MDDDG	SCEIE	SIC	THAFLLM	AKDKNTVV	262
Sev	213	GGFM	RGLIEAG	KIN	p I	KHVI	MDDDG	SCEIE	SIC	THAFLLM	AKDKNTVV	262
Sej	213	GGFM	RGLIEAG	KIN	<mark>p</mark> v	KHVI	MDDDG	SCEIE	SIC	THAFLLM	AKDKNTVV	262
Rba	213	GGFM	RGLIEAG	KIN	pv	KHVI	MDDDG	SCEIE	SIC	THAFLLM	AKDKNTVV	262
Gox	213	GGFM	RGLIEAG	KIN	DV	KHVI	MDDDG	SCEIE	SIC	THAFLLM	AKDKNTVV	262
	213	GGFM	RGLIEAG	KIN	p1	KHVI	MDDDG	SCEIE	SIC	THAFLLM	AKDKNTVV	262
	213	GGFM	RGLIEAG	KIN	D V	KHVI	MDDDG	SCEIE	SIC	THAFLLM	AKDKNTVV	262
	208	GGFT	RTMVEAT	SVATP	A	THHLI	MDDDI	ILDPR	VVN	ALGFLAY	VE-GELAV	257
	169	AGFT	RGIIEAI	SDPN-	I	THVVI		EVDAG	LLC	IRSALAY	IS-POICI	217

Figure S1. DDD motif is conserved among GlfT2 variants. Sequences are labeled according to Table S1, and the label for GlfT2 is in red. The DDD motif (Asp256–Asp258 for GlfT2) is invariant among these homologs, and the nearby residues are conserved. This alignment is colored using ClustalW2 coloring to indicate conservation.

Nbr	383	WDDVEYGI	RAREAGFVTVTLPNAAVWHADFYW <mark>KD</mark> YD-DWARYFSMRNSLIVGALHTDLD	440
Nf1	381	WDDVEYGL	RAREHGFVTVTLPNAAVWHADFYWKDYD-DWARYFSTRNSLIVGAMHTDLD	438
Rr1	377	WDDIEYGI	RARAAGEVTVTI.PNAGVWHADEHWKDRD-DWAKYESTRNSLIAAALHSDED	434
Ser	414	WDDVEFGL	RARAAGYPTTALPGAGVWHGDSRWRSOD-DHAGYFHLRNGLTTAGLHGGFG	471
Bde	430	FDDTEVAV	RALEHCYHTVCI. PCVAVWHOAWHDKDPSRTWEEVEFORNRWICCLI.HCPKP	488
Ban	428	FDDTEVCL	PAKEHGEHTVSI. PCVAVWHOAWHDKDPCPTWEEVENNPNPWVCALI, HAEKP	486
BII	201	FDDIETGL	PAKENCUPTISI DCUAUWHMCWUDKDDADCWEEVETODNDWICALI HEDNA	110
Mtn	370	WDDADYCL	RAKENGVFIISLFGVAVNINGWIDKDFAKGWEEIFIGKNAWICALLINFFNA	449
MtC Mmp	270	WDDADIGL	RAALHGIPIVILPGAAIWHMAWSDKDDAIDWDAIFHLKNKLVVAAMHWDGP	420
Mul	370	WDDADIGL	RAACHGIPTVTLPGAAIWHMAWSDKDDAIDWQAIFHLKNKLVVAAMHWDGP	420
Mlo	308	WDDADYGL	RAAEHGIPTVTLPGAAVWHMAWSDKDDAIDWQAIFHLKNRLVVAAMHWDG-	425
Mav	368	WDDADYGL	RAAEHGYPTVTLPGAAVWHMAWSDKDDAIDWQAYFHLRNRLVVAAMHWDG-	425
Map	3/1	WDDADYGL	RAAEHGYPTVTLPGAAIWHMAWSDKDDAIDWQAYFHLRNRLVVAAMHWDG-	428
Mil	365	WDDAEYGL	RAGEHGYPTVTLPGAAIWHMAWSDKDDAIDWQAYFHLRNRLVVAALHWDG-	422
Mmc	368	WDDAEYGL	RAGEHGYPTVTLPGAAIWHMAWSDKDDAIDWQAYFHLRNRLVVAALHWDG-	425
Mva	381	WDDAEYGL	RAAEQGYPTATMPGTAIWHMAWSDKDDAIDWQAYFHLRNRLVVAALHWDG-	438
Mgi	381	WDDAEYGL	RAAEQGYPTATMPGTAIWHMAWSDKDDAIDWQAYFHLRNRLVVAALHWDG-	438
Msm	391	WDDADYGL	RAGEHGYPTVTLPGAAIWHMAWSDKDDAIDWQAYFHLRNRLVVAALHWDG-	448
Mab	384	WDDAEYGL	RAGEHGYPTVTLPGAAIWHMAWSDKDDAIDWQAYFHLRNRLVVAALHWDG-	441
Rr2	382	WDDAEYGL	RAGEHGYGTVTLPGAAIWHMAWSDKDDAIDWQAYFHLRNRLVVAALHWDG-	439
N£2	382	WDDAEYGL	RANEHGYGTASMPGTAIWHMAWSDKDDAIDWQAYFHL <mark>RNR</mark> LVVAALHWDN-	439
Cur	381	WDDAEYGL	RARDAGYPTVTMPGAAIWHMAWSDKDDAIDWQAYFHL <mark>RNR</mark> LVVASLHMPG-	438
Cje	380	WDDVEYGL	RAREAGYPTVTLPGAAVWHMAWSDKDDAIDWQAYFHLRNRLVVAALHLPG-	437
Cgl	418	WDDGEFGL	RAKDAGFPTASWPGIAIWHMAWSDKDDAIDWQAYFHLRNRLIVAAIQHDG-	475
CgZ	445	WDDGEFGL	RAKDAGFPTASWPGIAIWHMAWSDKDDAIDWQAYFHLRNRLIVAAIQHDG-	502
Cg3	403	WDDAEYGL	RARKAGFPTATWPGIAIWHMAWSDKDDAIDWQAYFHLRNRLVVAAMYHQG-	460
Cof	406	WDDAEYGL	RARKAGFPTATWPGIAIWHMAWSDKDDAIDWQAYFHLRNRLVVAAMYHQG-	463
Cdi	396	WDDAEYGL	RARKAGFPTATWPGIAIWHMAWSDKDDAIDWQAYFHLRNRLVVAAMYHOG-	453
Se1	396	WDDAEYGL	RARKAGFPTATWPGIAIWHMAWSDKDDAIDWQAYFHLRNRLVVAAMYHOG-	453
Se2	438	WDDAEYGL	RAGAAGFPTATWPGIAIWHMAWSDKDDAIDWOAYFHLRNRLIVAAMNHDG-	495
Rsa	395	WDDAEYGL	RAGNAGFATATWPGVAIWHLAWSDKDDAIDWOAYFHLRNRLIVGAIE-NG-	451
Afb	395	WDDVEYGL	RAGAAGFPTVTVPGIAVWHMSFADKHDSLNWÕEYFLTRNOLVVAALHGPP-	452
Aau	392	WDDAEYSL	RAGGHGYPTVTLPGAAIWHMPWTDKNDATDWTAYFHTRNRLILAALHSPDE	450
Kra	397	WDDAEYGL	RAKOHGYATVSLPGAAVWHVSWIDKDDLVGWOAYFHTRNRLITALLHSPYE	455
Krh	403	WDDSEYGL	RAKAHGFPTVSLPGSAVWHVSWIDKDDLVGWOAYFHARNRVIAALLHSPYE	461
Njs	402	WDDAEYSL	RGRAAGF PTVTLPGAAVWHVSWADKDDSVDWOAYYHERNRLIATLLHSPFP	460
Cms	400	WDDAEYGL	RAMEHGYSTVSLPGACVWHVSWNDKDDTIDWOAYYHERNRFLVALLYSPYE	458
	368	WDDAEFGL	RAKOAGYSTVSI.PGVAVWHMPWTEKDDTIDWOAYYHARNRWI.AALI.YSPYS	426
Son	396	WDDSEFGL	RAKEAGYPTVTFPGAAVWHVPWTDKNDGLDWOAVFHORNRFVAALLHSPYP	454
Seh	401	WDDAEVAL	RAKEVGVPTVTI.PGAAVWHVSWVDKDDSODWOAFFHARNRI.TAALI.HSPYE	459
Sew	401	WDDAEVAL	RAKEVCVPTVTLPCAAVWHVSWVDKDDSODWOAFFHARNRI, TAALLHSPYF	459
Sep	380	NDDVEYCV	PAORAGY RTVTUPCUCI, WHO SEVD KODOL DWOA VYH I PNRTIMCI I VANOO	438
Ses	220	CDDLIECVI		201
Sev	220	CDDLI FCV		301
Sej	220	CDDLIFGI		201
Rba	220	CDDLIFGI		201
Gox	220	GDDLLF GYI	MUYUU NIYUI NGUAGNONDED YIGUI NGUI NEWYALISKKK-	201
	228	GDDLLFGY	MINKINNIVILNGVASWOMDFERKISVLNSYLNFRTVAVPALISKRK-	201
	338	GDDLLFGY	MIRKNNIVILNGVASWOMDFERKISVLNSYLNFRTVAVPALISKRK-	291
	338	GDDLLFGY	MHKKHNIVTLNGVASWOMDFERKISVLNSYLNFRTVAVPALISKRK-	291
	335	GDDIEYGC	RMAANGVETICLPGVAVWHESFHH <mark>K</mark> TSDWLTYYDMRNRLFVASLYPQLV	391
	298	GDDAEYGL	KLKRAGFPTVMWPGVYVAHPNLQNQTRPWHHYYDRRNALICALLERGAV	354

Figure S2. DDA motif is conserved among GlfT2 variants. Sequences are labeled according to Table S1, and the label for GlfT2 is in red. The Asp residues in the DDA motif (Asp371–Ala373 for GlfT2) are invariant among these homologs, and nearby residues are conserved. This alignment is colored using ClustalW2 coloring to indicate conservation.

Figure S3. Alignment used for homology model of GlfT2. This alignment was generated by the SWISS-MODEL server and used as the basis for the homology model shown in Figure 3B. This region of the GlfT2 sequence corresponds to its GT2 domain. The DDD and DDA motifs in GlfT2 are highlighted in red. This alignment showed 14.8% identity between the two sequences with an e-value of 3.6×10^{-9} .

Figure S4. GlfT2 catalysis is metal-dependent. Spectra from MALDI-TOF MS analysis of GlfT2 reactions are shown. Products corresponding to addition of *n* Gal*f* residues to compound **3** (left) or compound **5** (right) are observed from reactions of GlfT2, acceptor, and UDP-Gal*f* only when metal (Mg²⁺; "no EDTA") is present. In the presence of EDTA and absence of added metal, no products are observed from reactions with either acceptor (bottom spectra).

Figure S5. Analysis of STD NMR spectra for GlfT2 variants binding to UDP-Gal*f*. Addition of wild-type GlfT2 (B), D371A GlfT2 (C), D372A GlfT2 (D), D256A GlfT2 (E), or D258A GlfT2 (F) to a solution containing UDP-Gal*f* results in saturation transfer difference NMR signals at the indicated protons in the UDP-Gal*f* ligand (A). The signal for each distinct proton is plotted to give an STD NMR profile. Comparison of STD NMR profiles for the variants indicates that D372A and wild-type GlfT2 bind UDP-Gal*f* in a similar manner, D256A and D258A bind UDP-Gal*f* similarly to each other but distinctly from wild-type GlfT2, and D371A binds UDP-Gal*f* in a manner distinct from wild-type GlfT2.

Figure S6. GlfT2 D371E variant shows wild-type polymerization activity. Spectra from MALDI-TOF MS analysis of 20 h incubations of GlfT2 D371E with either compound **3** (top) or compound **5** (bottom) show polymeric products. To orient these spectra with those shown in Figure 5, certain peaks that correspond to $[M+Na]^+$, where M equals the mass of the acceptor plus *n* Gal*f* residues, are labeled with the appropriate value of *n*. Labels are shown only for the short products (*n* = 1, 2) and for the highest-intensity peak of the polymeric products (*n* = 21, 27).

```
SpHasA 41 ----KVAAV IPSYNEDAES LLETLKSVLA QTYPLSEIYI VDDGSSNTDA
   3bcvB 3 LIP--KVSVI VPIYNVE-KY LDQCVQALLA QTLSDIEIIL IDDESP-DNC
   SphasA 86 IQLIEEYVNR EVDICRNVIV HRSLVNKGKR HAQAWAFERS DADVFLTVDS
   3bcvB 49 PKICDDYAAQ YPN----IK VIHKKNAGLG XACNSGLDVA TGEYVAFCDS
   SphasA 136 DTYIYPNALE ELLKSFNDET VYAATGHLNA RNRQTNLLTR LTDIRYDNAF
   3bcvB
         94 DDYVDSDXYX TXYNVAQKYT CDAVFTFKLY KNKNEI-HTL LKDLIASDPY
  SpHasA 186 GVERAAQSLT GNILVCSGPL SIYRREVIIP NLERYKNQTF LGLPVSIGDD
   3bcvB 163 AREE----- -RAIQVSAKV VLYRRNLIEK KHLRFVSER- ----ILPSED
   SpHasA 236 RCLTNYAIDL GRTVY --
   3bcvB 201 LIFNVDVLAN SNIVCVLP
Β
   CesA 145 ----- -----PDE WPTVDIFVPT YNEELSIVRL TVLGSLGIDW
   1xhbA 95 NRSLPDVRLE GCKTKVYPDN LPTTSVVIVF HNEAWSTLLR TVHSVINRSP
   Cesa 178 PPEKVRVHIL DDGRRPE-FA AFAAECG--- ---ANYIARP TNEHAKAGNL
   1xhbA 145 RHMIEEIVLV DDASERDFLK RPLESYVKKL KVPVHVIRME ORS-GLIRAR
```

CesA 221 NYAIGHTDGD YILIFDCDHV PTRAFLQLTM GWMVEDPKIA LMQTPHHFYS 1xhbA 194 LKGAAVSRGQ VITFLDAHCE CTAGWLEPLL ARIKHDRRTV VCPII-DVIS CesA 271 PDPFORNLSA GYR----- ----TPPE GNLFYGVVOD GNDFWDATFF 1xhbA 243 DDTFEYMAGS DMTYGGFNWK LNFRWYPVPQ REMDRR-KGD RTLPVRTPTM CesA 308 CGSCAILRRT AIEQIGGFAT QTV---TEDA HTALKMORLG WSTAYL ---1xhbA 292 AGGLFSIDRD YFQEIGTYDA GMDIWGGENL EISFRIWQCG GTLEIVTCSH

Figure S7. Sequence alignments used for homology modeling of other GT-2 glycosyltransferases. (A) Alignment of hyaluronan synthase from Streptococcus pyogenes (SpHasA; GenBank accession number AAA17984.1) with the sequence of a glycosyltransferase PDB ID: 3BCV. This alignment, generated automatically by SWISS-MODEL, was used for the subsequent homology model of SpHasA, which showed 18.6% identity between the two sequences and gave an e-value of 1.3×10^{-14} . (B) Alignment of cellulose synthase from Gluconacetobacter xylinus (CesA; GenBank accession number P21877.3) with the glycosyltransferase UDP-GalNAc:polypeptide α -N-acetylgalactosaminyltransferase-T1 (PDB ID: 1XHB). This alignment was generated automatically in SWISS-MODEL and was used for subsequent homology modeling. This alignment showed 13.1% sequence identity between the two sequences with an e-value of 1.6×10^{-11} .

Α

Table S2. Oligonucleotide primers used for site-directed mutagenesis. For each desired mutation, the primer indicated in the table and its reverse complement (not shown) were used together in the PCR mixture.

0	
GlfT2 D256A	5'— CAGATCCTATTCATG <u>GCC</u> GACGACATCCGCCTC—3'
GlfT2 D256E	5'— CAGATCCTATTCATG <u>GAG</u> GACGACATCCGCCTC—3'
GlfT2 D258A	5'— CTATTCATGGACGAC <u>GCC</u> ATCCGCCTCGAGCCG—3'
GlfT2 D258E	5'— CTATTCATGGACGAC <u>GAG</u> ATCCGCCTCGAGCCG—3'
GlfT2 D371A	5'— GCCGTTGTTCATCAAATGG <u>GCC</u> GACGCCGATTACGGCC—3'
GlfT2 D371E	5'— GCCGTTGTTCATCAAATGG <u>GAA</u> GACGCCGATTACGGCC—3'
GlfT2 D372A	5'— GCCGTTGTTCATCAAATGGGAC <u>GCC</u> GCCGATTACGGCC—3'
GlfT2 D372E	5'— GCCGTTGTTCATCAAATGGGAC <u>GAA</u> GCCGATTACGGCC—3'