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Appendix: Single Pulse Model (SPM) and Estimation

The SPM can be developed in several steps.  The first step models a single transcript in a

single cell across cell cycles as a binary process:

Y (t) =
1 t ∈ [ς + cΘ,ξ + cΘ),  some c ∈ {0,1,2,...}

0 otherwise

 
 
 

 
 

,

where Y (t) denotes expression level at time t, (ς,ξ)  with (0 ≤ ς < ξ ≤ Θ) denote activation

and deactivation times, Θ is the cell cycle span, c =  0,1,2,… denotes 1st, 2nd, 3rd, … , cell

cycle.  Alternatively, the above display may be written as

Y (t) =
c≥ 0
∑ I{ς + cΘ < t ≤ ξ + cΘ}

with the summation over  1st, 2nd, 3rd, … , cycle, and I{•} is an identity function.

The second step considers multiple transcripts within a single cell, giving an expression pulse

for the cell having background and elevated expression levels ( ˜ α , ˜ α + ˜ β ) and activation and

deactivation times (ς,ξ)  (Fig.1).  The model for the expected expression level for the cell

may be written as

˜ α + ˜ β 
c≥ 0
∑ I{ς + cΘ < t ≤ ξ + cΘ}.

A third step acknowledges the fact that multiple cells are pooled and are synchronized, but

that the synchronization is not perfect.  Let tk denote the targeted timing.  The actual timing

of single cells, Tk, is randomly distributed around tk, and is assumed to have a normal
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distribution with mean tk and standard deviation σ.  Notationally, let Y (t) =
i=1

N

∑ Yi

*(t + Ti ),

where N is the number of cells in the synchrony, (t + Ti) is the age (timing) of the ith cell,

and Yi
*  is the expression level of a particular gene in the ith cell.  Modeling the mean

expression level Yi by SPM gives the expected values of Yi
*(t + Ti ) as

˜ α + ˜ β 
c≥ 0
∑ I{ς + cΘ < t + Ti ≤ ξ + cΘ}.

The mean expression for the synchrony then arises from summation over the N cells and

taking the expectation over the random timing (Ti).  Following some simple algebra, we can

show that the mean expression level at time tk can then be written as:

˜ α + ˜ β 
c ≥ 0
∑ φ(

ξ + cΘ − tk

σ
) −φ(

ς + cΘ − tk

σ
)

 
 
 

 
 
 

where φ(x)  is the Gaussian cumulative distribution function and α = N ˜ α  and β = N ˜ β .

A fourth step acknowledges that the synchronization deteriorates over time, an inherent

limitation with all synchronization protocols.  We model this deterioration by allowing σ to

monotonically increase with time t.  Specifically, we assume that the standard deviation for

the timing of cells in sample k follows an exponential form model:

σk = exp(γ 0 + γ1tk ),

where (γ0,γ1)  are parameters to be estimated.

A fifth step incorporates multiplicative (λ k ) and additive (δk ) heterogeneity factors between

samples.  Variations in mRNA extraction, amplification and assessment may result in
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heterogeneity between samples.  As mentioned previously, the desire to accommodate such

heterogeneities leads to the following model for the mean expression level,

µ(tk) = δk + λ k{α + β
c ≥0
∑ Φ(

ξ + cΘ − tk

σ k

) − Φ(
ς + cΘ − tk

σ k

)
 

 
 

 

 
 }

in which δk  and λ k  are specific to the kth sample and the δk ’s and λ k ’s average to zero and

1, respectively, over the K samples.  As written, the model is applicable to measurements of

the abundance of transcripts directly.  To analyze ratios of transcript levels we choose to

eliminate the multiplicative heterogeneity factors (λ k ≡1).

Each gene is allowed to have its own activation and deactivation time and its own

background and elevated expression level, giving the SPM model for the mean expression for

the jth gene as

µ j(tk ) = δk + λ k{α j + β j
c ≥0
∑ Φ(

ξ j + cΘ − tk

σ k

) − Φ(
ς j + cΘ − tk

σ k

)
 

 
 

 

 
 },

where j =  1, 2, … , J  and k = 1, 2, … , K  denote all J genes in all K samples.

To find parameter estimates that solve the estimating Eq. 1 we can minimize the weighted

sum of squares,

j =1

J

∑ ˆ v j
−2

k=1

K

∑ [Yjk − µ j(tk )]2 
  

  
   

. [A1]

Because the mean activation and deactivation times represent changing points and are

restricted (ς j ≥ 0,ξ j ≥ 0 and ξ j >ς j ), we minimize the above sum of squares (Eq. A1) with

respect to the other parameters at each point on fine grid values for (ς j ,ξ j ), and select the set

of parameters estimates giving an overall minimum for Eq. A1.  We restricted the profiling
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procedure to points such that (ς j ,ξ j ) included at least two tk values.  The weight function in

the calculation was defined as

ˆ v j
2 = 1

K
k=1

K

∑ [Yjk − ˆ µ j
0 (tk )]2,

where ˆ µ j
0 (tk ) = ˆ δ k + ˆ λ k ˆ α j  denotes the estimated value of µ j(tk ) upon requiring β j = 0 .  Note

also that upon estimating all model parameters,

Rj
2 = 1− 1

K ˆ v j
−2

k =1

K

∑ [Yjk − ˆ µ j(tk )]2 ,

is simply the percentage of the variation in expression levels for gene j, after heterogeneity

parameter adjustment, that is explained by the cycle aspects of the SPM model.  Hence an Rj
2

value close to unity implies that the SPM is providing a good representation of the observed

expression profile for the jth gene.

As mentioned in Methods, we carried out the parameter estimation in multiple stages to

simplify calculations.  The first stage led to estimates of ( ˆ δ k , ˆ λ k ), k = 1,…,K, by minimizing

Eq. A1 with all β j  values restricted to be zero.  Under this restriction we also have

ˆ α j = K −1

k=1

K

∑ (Yjk − ˆ δ k ) / ˆ λ k ,

so that  ˆ µ j
0 (tk ) values and weights ˆ v j

2  can be calculated.  Next the cell cycle span estimate,

ˆ Θ , was calculated by minimizing Eq. A1 under a SPM. Because most of the transcripts are

not cell cycle regulated, we used only a set of 104 known periodic transcripts to ensure an

appropriate estimate of the cell cycle span.  The calculation involves profiling over the cell
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cycle span Θ , for example, for the cdc28 data set, from 40 to 80 min in units of 1 min.  On

the same set of genes, we estimated the synchronization variability,σk , by minimizing  Eq.

A1.

Upon fixing these parameters the minimization of Eq. A1 with respect to the parameters

(ς j ,ξ j ,α j ,β j ) for the jth gene simply requires the minimization of

k=1

K

∑ [Yjk − µ j(t j)]
2 ,

separately for j = 1, … , J, much simplifying the calculation.  Also estimated standard

deviations for these parameter estimates arise from applying the sandwich formula (1) to data

for the jth gene alone under the model assumption and the independence assumption of Yk

given xk.  These calculations give statistics Zj, the ratio of ˆ β j  to its standard deviation, that

will have an approximate standard normal distribution if β j = 0 , for each j = 1, … , J.  Under

such a standard normal distribution the probability that Zj exceeds 5 in absolute values is

about 5.7 × 10-7, so that the probability that any one of the ˆ β j  values, say 6,000 genes,

exceeds 5 if all β j  values equal zero is conservatively estimated, using a Bonferroni

approximation, as 6,000 × 5.7 × 10-7  =  0.003.  This suggests that our threshold of 5 may be

too extreme, especially because the Bonferroni correction is conservative, but the standard

normal distribution approximation for Zj may be rather liberal, especially if the number of

samples (K) is fairly small.  Hence we have chosen to retain the rather extreme threshold of

5.
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The numerical procedure outlined above ensures that parameter estimates of all model

parameters can be obtained under minimal constraints on the data [e.g., heterogeneity

corrected values, (Yjk − ˆ δ k ) / ˆ λ k  must exhibit some variation across samples].  It would be

desirable to have further statistical development to ensure that the multistage estimation

procedure has minimal effect on Z statistics compared to a procedure that simultaneously

estimates all model parameters, and to examine the conservatism associated with asymptotic

normal approximation for the distribution of model parameter estimates.  In the context of

the two group comparison problems and the time-course analyses mentioned in Methods, we

find that each Zj value does not depend much on whether heterogeneity and regression

parameters were estimated in multistages as in this paper, or jointly (L. P. Z., unpublished

observations).  Asymptotic normal approximations, however, appeared to be more liberal in

the extreme tails than did certain empirical approximations to the Zj distribution that arise by

comparing Zj values under various permutations of the regression variable among samples.
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