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SI Text 1. Effect of Model Parameters η and γ
1.1. Distance Penalty (η) in the Exponential Decay Model. Distance
penalty (η) in the exponential decay model is addressed in
Fig. S1.

1.2. Effect of Parameters η and γ in the Economical Clustering Model.
Effect of parameters η and γ in the economical clustering model
is illustrated in Figs. S2 and S3.

SI Text 2. Simulated Annealing
Simulated annealing (SA) is a widely used and generally robust
method of optimization (1). It is most often used for optimizing
multiparameter functions, which may be difficult to optimize by
more computationally expedient methods. Its main disadvantages
are that it can be computationally costly and (likemost optimization
methods) it can get stuck in local minima. Here we used SA to es-
timate the generative model parameters that minimized an energy
function or, equivalently, maximized similarity between simulated
and experimental [functional MRI (fMRI)] networks (SI Text 4).
To mitigate the risk of local minimization, each optimization

was estimated by 10 different annealing processes, starting twice
from five different initial parameter values: ðη; γÞ ¼ ð0; 0Þ; ðη; γÞ ¼
ð0; 5Þ; ðη; γÞ ¼ ð5; 5Þ; ðη; γÞ ¼ ð5; 0Þ; and ðη; γÞ ¼ ð2:5; 2:5Þ. Fig.
S4 shows that the jitter in parameter values obtained by these
separate optimization runs is small compared with the differences
in parameters between the healthy volunteer and childhood onset
schizophrenia (COS) datasets.
We note that the residual jitter in parameter values estimated

by different annealing runs likely results from two independent
sources of variability. First, SA may not find exactly the same
parameters for two runs on a given energy landscape. The second
factor is the stochastic nature of our generative model, which leads
to variations in the network structures—and therefore the value
of the energy function—obtained in repeated runs (even if the
model parameters are identically estimated by different annealing
runs). In effect, this means that the energy landscape is fluctuat-
ing over time during the optimization process, and we are looking
for a point that is optimal on average. SA is therefore a conve-
nient optimization method because it avoids calculating local
gradients and instead visits various points in parameter space.

SI Text 3. Evaluation of Generative Models
In the main text, we have focused on three possible generative
models: (i) a simple, one-parameter model of connection proba-
bility as a function of distance (Eq. 1); (ii) an economical prefer-
ential attachment, two-parameter model of connection probability
as a function of distance and the degrees of the connected nodes
(Eq. 2); and (iii) an economical clustering, two-parameter model
of connection probability as a function of distance and the clus-
tering of connectivity between nodes (Eq. 3). In addition, we
evaluated nine other possible generative models that were variants
on these thematic exemplars.
For each of the 12 models considered in total, we summarize in

Table S1 its name, abbreviation, specification, optimal parameter
values, and goodness-of-fit statistics. As detailed in SI Text 4,
below, the goodness-of-fit measures include individual P values
for the difference in each of four key network properties between
simulated and experimental networks, as well as the minimum
of the energy function (the inverse of the product of these four
P values).
Fig. S5 shows that among the four best models from Table S1

(E2 < 106), the economical clustering model provides the best fit

to the distance distribution, which was left unconstrained during
annealing. Note that all variants of the economical preferential
attachment model (two of which are shown in Fig. S5) yield
similarly bad fits to the distance distribution.

SI Text 4. Choice and Validation of an Energy Function
Tomeasure how well a set of model networks fits the data, we take
the (rescaled) difference between the mean values of each mea-
sure in the two samples (multiple probabilistic realizations of the
generative model vs. multiple experimental (fMRI) datasets):

TC ¼

�
�
�〈Cdata〉−〈Cmodel〉

�
�
�

SEC

TE ¼

�
�
�〈Edata〉−〈Emodel〉

�
�
�

SEE

TM ¼

�
�
�〈Mdata〉−〈Mmodel〉

�
�
�

SEM
;

where C; E, and M denote clustering, efficiency, and modularity,
respectively, and SE in the denominator is the standard error on
the mean of the numerator (this is required to take model and data
variability into account in the comparison). These distance meas-
ures, T; are therefore simply the t statistics for the t tests between
model and data for each measure. The degree distribution is an
exception to this because it is far from normally distributed, and its
mean is not an appropriate characterization of the distribution. For
this case, we use a Kolmogorov-Smirnov (KS) test to calculate the
distance KSdeg between the observed and simulated degree dis-
tributions.
For an energy function, we now need to combine four distance

terms (TC; TE; TM ; and KSdeg) into just one expression. An ob-
vious choice is to use a product (or sum) of the inverse of the
four terms: E1 ¼ 1=ðTC:TE:TM :KSdegÞ. Note that the inverse
operation is needed only if we prefer to minimize the energy
function rather than maximize it.
However, because KSdeg is not scaled to the other measures it

may, in this case, be more suitable to use directly the P value of
the t test (or KS test) instead of the t statistic (or KS distance) for
each measure. We then have: E2 ¼ 1=ðpC:pE:pM :pdegÞ or E3 ¼
1=pC þ 1=pE þ 1=pM þ 1=pdeg.
In this article, we have principally used E2 as the energy

function minimized by SA. We have found the parameter values
that minimize E2 for any given generative model; and we have
used the minimum value of E2 (associated with optimal param-
eters) as a goodness-of-fit metric to benchmark different gener-
ative models in terms of the closeness of their approximations
to experimental brain networks derived from the same set of
fMRI data. Generative models that more closely approximate
experimental networks will have relatively low energy functions
at optimization. As shown in Table S1, four models (including
economical clustering) set themselves apart by yielding very low
energy values. Among the four best-fit models, we have focused
on economical clustering because this model was the only one (of
all 12 models considered) also capable of approximately cap-
turing the distance distribution of connections and the proba-
bility distribution of nodal topological properties—two require-
ments not built into the annealing procedure (Fig. S5).

Vértes et al. www.pnas.org/cgi/content/short/1111738109 1 of 10

www.pnas.org/cgi/content/short/1111738109


However, we could have used either E1 or E3; among other
possible choices of energy function. To demonstrate that the
results reported on the basis of minimizing E2 were not unduly
biased by the precise form of the energy function, we also used
E1 and E3 as a basis for SA of the parameters for all 12 prob-
abilistic models considered.
As shown in Fig. S6, the relative rankings of themodels in terms

of energy minimization is fairly consistent across different choices
of energy function, especially among the better-fitting models.
We found that, as shown in Fig. S7, the variation between

parameters of the same model estimated by annealing over dif-
ferent energy functions (E1; E2, and E3) was small compared with
the variation between parameters of different models.
Both these results suggest that the specific details of the energy

function do not materially affect the key results reported on the
basis of optimizing E2:

SI Text 5. Effects of Network Connection Density
In the main text, we have focused on comparing modeled net-
works with experimental networks at a connection density of 4%.
This connection density was chosen because it maximized the
topological differences in network organization between healthy
volunteer and schizophrenic groups. However, to demonstrate
that other aspects of the analysis, such as the relative goodness of
fit of various generative models, do not depend sensitively on the
connection density at which modeled and experimental networks
are compared, we additionally report these results for networks at
connection densities of 8% and 16%.
As shown in Table S2, the economical clustering model (Eq. 3)

provides a better approximation of the experimental data than
either the exponential decay model (Eq. 1) or the economical
preferential attachment model (Eq. 2) at all connection densities
considered. Note that denser networks become more random
and therefore less particular to the data being analyzed. We also
avoid overly sparse networks, which are largely disconnected,
and therefore focus on the range 4–16%.
We also note that we focused on modeling the probability of

functional connection in a single (right) hemisphere of the ce-
rebral cortex. As briefly mentioned in Materials and Methods, we
did so because we assumed that the distance between function-
ally connected regions is more likely to faithfully represent the
length of an anatomical connection between them when both
regions are located in the same hemisphere.

SI Text 6. Validation of Generative Models
6.1. Unconstrained Degree Distribution. Unconstrained degree dis-
tribution is illustrated in Fig. S8.

6.2. Validation of Generative Models on an Independent Dataset of
Normal fMRI Networks. In the main text, the performance of the
economical clustering model was compared with other possible
generative models by analysis of a set of fMRI data collected
on 20 healthy volunteers. This approach is potentially open to
criticism in that the model parameters were estimated on the
same experimental dataset that was also used to quantify model
goodness of fit. To address this potential circularity, we acquired
fMRI data (using identical experimental procedures) on a second
independent sample of normal volunteers. Using the generative
model parameters estimated from the first fMRI dataset, we then
evaluated the goodness of fit of the modeled networks in com-
parison with the brain networks derived from the second ex-
perimental dataset.
As shown in Fig. S9, the economical clustering model with

parameter values estimated from the first experimental dataset
was able to approximate closely the clustering, efficiency, mod-
ularity, degree distribution, and distance distribution estimated
in the second experimental dataset. Thus, the model is able to
provide a good fit to experimental brain networks even when it is

evaluated in the context of experimental data that were not used
to optimize its parameters.

SI Text 7. Effects of Schizophrenia on Generative Model
Parameters
Effects of schizophrenia on generative model parameters are
illustrated in Fig. S10.

SI Text 8. Optimization and Tradeoffs
If we knew the function optimized by brain networks, we could use
this optimality function to inform our analysis. However, the
optimality function for brain network selection is not certainly
known. Some degree of cost minimization is considered likely to
be an important consideration for brain network formation. Brain
networks are also topologically efficient. However, here we show
that simple optimization of either connection distance (a measure
of cost) or efficiency does not accurately reproduce the properties
of brain networks.
To minimize cost (for a given number M of edges), one simply

includes theM shortest edges available. If enforcing full connectivity,
one begins by finding the minimum spanning tree over the edge
lengths, then one adds edges in ascending order of connection dis-
tance until a total ofM edges is reached. As shown in Table S4, this
results in a highly clustered network that is very far from the data.
Brain networks are also significantly less efficient than random

networks with the same number of nodes and edges (Ebrain ¼
0:29± 0:02, whereas Erand ¼ 0:36± 0:002), ruling out the idea
that the brain simply optimizes for efficiency.
In short, simple optimization of one or other of a number of

possible selection criteria (cost, efficiency) does not generate
graphs that are even statistically similar to brain graphs. Some-
what more surprisingly, the brain is also not wired so as to achieve
a specific desired efficiency at minimum cost. Indeed, it is easy
to generate networks with efficiencies comparable to that of the
brain at much lower cost. This can be seen, for example, by ex-
amining the distance distribution for the exponential decay model
(shown in green) in Fig. 1.
It is possible that there exists a simple network measure that

embodies the subtle tradeoff between cost and function sought by
brain networks. However, it is currently not known what prop-
erties (if any) the brain is strictly optimized for, so simple opti-
mization is not currently an option for generating brain-like
graphs. Instead, we can (as is done in this article) posit simple
growth rules that embody some plausible tradeoffs between cost
and topological properties, then test how brain-like the resulting
networks are.We find that some such simple, two-parameter rules
generate networks that share many topological properties ob-
served in the data.
The idea that two simple constraints can generate networks

with a given clustering, modularity, efficiency, and degree dis-
tributions also highlights the fact that the large (and growing)
numbers of network measures are not independent of one an-
other. Ultimately, we hope that the type of approach adopted in
our article will provide insights into the question of what in-
dependent topological features (if any) the brain has evolved to
optimize and under what constraints. Once such hypotheses exist,
and provided they are simple enough, they could of course be
tested by a direct optimization method. We therefore view these
two approaches as complementary.
Note also that, even if the brain were found to have evolved to

optimize a small set of network properties, it would still be in-
teresting to discover what local growth rules may be used by an
evolving network to ensure the emergence of this set of desirable
features.
Importantly, however, the growth rule approach does not rule out

the possibility that the brain is in fact not optimal in any simple
sense. For example, the quantity to optimize may be a complicated
global property, such that evolution has instead optimized simpler,
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more local properties only achieving an approximation of the op-
timal topology. This situation is quite different from the engineering

context, where products are designed to directly optimize a set of
desired attributes and are then accurately wired to achieve this state.

1. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C: The
Art of Scientific Computing (Cambridge Univ Press, New York), 2nd Ed.

Fig. S1. To match the observed value of modularity within a 95% confidence interval (marked by the blue horizontal line and blue box in the top plot), the
parameter η needs to be set at η ¼ 0:09± 0:01 (marked by the dashed line and gray box). However, matching the observed value of efficiency within a 95%
confidence interval (marked by a blue line and blue box in the bottom plot) requires η ¼ 0:18± 0:02 (marked by the dashed line and gray box), which cor-
responds to a lower value of modularity. The exponential decay model is therefore unable to match the observed values of modularity and efficiency si-
multaneously. Note that in practice we used SA for optimizing the parameter η in this simple model, purely for consistency with the procedure adopted for the
more complex, two-parameter models used later on.
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Fig. S2. Varying η with γ set at the value used to model normal human fMRI data (γ ¼ 3:17) has little effect on the degree distribution (A) but greatly in-
fluences the distance distribution (B). Larger values of η correspond to sharper distance penalties and therefore result in fewer long-distance links. This can also
be seen in the schematic representation of the brain network for each parameter setting (C–G). Throughout the figure, values of η are color-coded so that
networks with η ¼ 0; 1;1:5; 2; 2:63 are represented in dark green, light green, yellow, orange, and red respectively. This final network (G) with η ¼ 2:63 and
γ ¼ 3:17 (red) corresponds to the best-fitting model of these data.
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Fig. S3. Varying γ with η set at the value used to model normal Human fMRI data (η ¼ 2:63) has little effect on the distance distribution (B) but greatly
influences the degree distribution (A). Larger values of γ correspond to more skewed degree distributions and therefore the occurrence of more and larger
hubs. This can also be seen in the schematic representation of the brain network for each parameter setting (C and D). Throughout the figure, values of γ are
color-coded so that networks with γ ¼ 0; 1; 2; 3; 3:17 are represented in dark green, light green, yellow, orange, and red, respectively (C–G). This final network
(G) with η ¼ 2:63 and γ ¼ 3:17 (red) corresponds to the best-fitting model of these data.

70 1 2 3 4 5 6

7

0

1

2

3

4

5

6

Eta

G
am

m
a

HV

COS

Fig. S4. This plot shows the jitter in parameter values obtained when we perform SA 10 times for both the healthy volunteer group (HV) and the COS group.
We start the annealing process for a given dataset twice from each of the following five initial positions: ðη; γÞ ¼ ð0; 0Þ; ðη; γÞ ¼ ð0; 5Þ; ðη; γÞ ¼ ð5; 5Þ;
ðη; γÞ ¼ ð5; 0Þ; and ðη; γÞ ¼ ð2:5; 2:5Þ. Note that the resulting jitter in parameter values is small compared with the differences in parameter setting between the
healthy volunteer and COS datasets.
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Fig. S5. Among the four best models from Table S1 ðE2 < 106Þ, the economical clustering model with power-law distance penalty provides the best fit to the
distance distribution, which was left unconstrained during annealing.
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Fig. S6. This plot shows energy values minimized by SA for all 10 two-parameter generative models (we have excluded the simple exponential and power-law
decay models because they consistently yielded much higher energies and would have affected the axes considerably). The models are ordered along the x axis
according to their ranking in terms of E2 energy as shown in Table S1. The blue diamonds, red circles, and black crosses correspond to E1 ¼ 1=ðTC :TE :TM :KSdegÞ,
E2 ¼ 1=ðpC :pE :pM :pdegÞ, and E3 ¼ 1=pC þ 1=pE þ 1=pM þ 1=pdeg; respectively. Generative models are abbreviated as in Table S1. EcoC, economical clustering
(Eq. 3); EcoPA, economical preferential attachment (Eq. 2).
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Fig. S7. This plot shows the optimal parameter values (η and γ) for the five best generative models, estimated by SA on three alternative energy functions. The
five models are the economical clustering (EcoC) with power-law distance penalty (red), the EcoC model with exponential distance penalty (magenta),
the economical preferential attachment (EcoPA) model using the sum of degrees (blue), and the EcoPA Max models using the maximum of degrees with
both power-law and exponential distance penalties (green and orange, respectively). The shape of the markers represents the energy functions used for
annealing. The diamond, the open circle, and the cross correspond to E1 ¼ 1=ðTC :TE :TM :KSdegÞ, E2 ¼ 1=ðpC :pE :pM :pdegÞ, and E3 ¼ 1=pC þ 1=pE þ 1=pM þ 1=pdeg;

respectively.
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rameters that enable relatively accurate modeling of human fMRI data, both in terms of matching the key network measures (A), as well as the degree (B) and
distance (C) distributions.
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Fig. S9. Results from Fig. 1 are replicated in a second, independent group of 12 healthy volunteers. We show the comparison of networks simulated by three
generative models with brain functional networks derived from experimental fMRI data (blue). Once again, both the model based on an exponential distance
penalty (green) and the economical preferential attachment model (orange) fail to simultaneously capture several topological characteristics of functional
brain networks. In contrast, the economical clustering model (red) yields significantly more realistic networks by all of the following measures. (A) Normalized
clustering coefficient, global efficiency, and modularity of brain functional networks are all well matched by the economical clustering model. All values are
averaged over 12 instantiations of each network, and error bars represent the 95% confidence interval for the mean. Degree (B) and distance (C) distributions
are shown in solid colored and dashed black lines for the models and data, respectively. Both distributions are more closely approximated by the economical
clustering model (red) than by the exponential decay (green) or economical preferential attachment (orange) models. All networks have an overall connection
density of 4%.
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Fig. S10. Comparison of networks simulated by three generative models with brain functional networks derived from experimental fMRI data on a group of
participants with COS (blue). Both the simple one-parameter model based on an exponential distance penalty (green) and the more sophisticated economical
preferential attachment model (orange) fail to simultaneously capture several topological characteristics of functional brain networks. In contrast, the eco-
nomical clustering model (red) yields significantly more realistic networks by all of the following measures. (A) Normalized clustering coefficient, global ef-
ficiency, and modularity of brain functional networks are all well matched by the economical clustering model. All values are averaged over 19 instantiations of
each network, and error bars represent the 95% confidence interval for the mean. Degree (B) and distance (C) distributions are shown in solid colored and
dashed black for the models and data, respectively. Both distributions are significantly better captured by the economical clustering model (red) than by the
exponential decay (green) or economical preferential attachment (orange) models. (D–G) Schematic representation of the right hemisphere of the fMRI brain
network for one participant (blue) and of a representative network generated by a single instantiation of each model. To ensure that these networks are
representative, the single participant and the specific model instantiations displayed were each chosen to have the median value of skew in their degree
distributions. The size of each node represents the degree of the corresponding brain region within the network. All networks have an overall connection
density of 4%.
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Table S1. Value of the minimum energy attained via annealing [using the energy function E = 1/(pC · pE · pM · pdeg)] can be used to
quantify the suitability of various one- and two-parameter models for simulating our data

Model name Abbreviation Model η γ PC PE PM K S deg Energy

Exponential decay ExpD Pij ∝ exp(−ηdi,j) 0.16 NA 5.10−9 0.04 4.10−8 8.10−68 1084

Power-law decay PLD Pij ∝ exp(di,j)
−η 3.38 NA 3.10−11 7.10−8 2.10−4 2 × 1070 5.10−91

Economical clustering EcoC Pij ∝ exp(ki,j)
γ(di,j)

−η 2.63 3.17 0.79 0.74 0.10 2.10−4 105

Economical clustering with
exponential distance penalty

EcoC (exp) Pij ∝ (ki,j)
γexp(−ηdi,j) 0.08 2.8 0.85 0.02 0.24 10−3 2 × 105

Economical preferential attachment EcoPA Pij ∝ (kikj)
γ(di,j)

−η 5.37 1.81 0.01 0.80 0.001 3 × 10−9 3 × 1013

Economical preferential attachment
with exponential distance penalty

EcoPA (exp) Pij ∝ (kikj)
γexp(−ηdi,j) 0.19 1.42 0.005 0.51 0.0001 1.5 × 10−11 2 × 1017

Economical summed preferential
attachment

EcoPA Sum Pij ∝ (ki + kj)
γ(di,j)

−η 5.19 1.81 0.27 0.78 0.12 7 × 10−6 6 × 106

Economical summed preferential
attachment with exponential distance
penalty

EcoPA Sum (exp) Pij ∝ (ki + kj)
γexp(−ηdi,j) 0.18 1.42 0.007 0.95 0.008 10−4 2 × 108

Economical minimum preferential
attachment

EcoPA Min Pij ∝ (min[ki, kj])
γexp(di,j)

−η 5.55 2.03 0.05 0.34 0.0003 9 × 10−6 2 × 1010

Economical minimum preferential
attachment with exponential
distance penalty

EcoPA Min (exp) Pij ∝ (min[ki, kj])
γexp(−ηdi,j) 0.18 1.49 0.001 0.65 0.004 10−9 2 × 1014

Economical maximum preferential
attachment

EcoPA Max Pij ∝ (max[ki, kj])
γ(di,j)

−η 5.53 2.42 0.95 0.08 0.05 5.5 × 10−4 5 × 105

Economical maximum preferential
attachment with exponential
distance penalty

EcoPA Max (exp) Pij ∝ (max[ki, kj])
γexp(−ηdi,j) 0.19 1.97 0.41 0.88 0.33 1.5 × 10−5 5 × 105

The lower the energy value the closer an approximation the model can yield, with optimal parameters, to real data. Here we report energy values for a set
of alternative models that were found to be less suitable than the economic clustering rule presented in this article. In each case we display the values of the
parameters η and γminimizing the energy function, the energy value obtained (median value over 15 independent runs for a given set of parameters), and the
P values for the comparison of each network metric between groups of experimental data and multiple realizations of the simulated networks. The P values
that show no significant difference between model and data (P > 0.05) are highlighted in bold.

Table S2. Key results presented in this article also hold at 8% and 16% connection cost, in
healthy volunteers

Cost η γ PC PE PM Pk Energy

Cost = 8%
Exponential decay 0.05 NA 5.10−25 5.10−15 10−7 10−54 3.10−99

Economical preferential attachment 4.47 1.78 10−4 4.10−3 0.05 6.10−5 5.1011

Economical clustering 2.27 2.42 0.21 0.75 0.43 5.10−3 3.103

Cost = 16%
Exponential decay 0.08 NA 5.10−7 0.02 9.10−9 2.10−44 8.10−59

Economical preferential attachment 3.39 1.54 5.10−4 2.10−4 0.04 10−3 2.1011

Economical clustering 1.89 1.76 0.20 0.35 0.07 0.05 4.103

In each case we display the values of the parameters η and γ minimizing the energy function, the energy
value obtained, and the P values for the comparison of each network metric between groups of experimental
data and multiple realizations of the simulated networks (with the three models discussed in the main text). The
P values that show no significant difference between model and data (P > 0.05) are highlighted in bold. These
results are fully consistent with the results presented in Table S1 and throughout the article at cost = 4%.

Table S3. Simulated annealing results for several possible generative models of brain networks
in COS

Childhood onset schizophrenia η γ PC PE PM Pk Energy

Exponential decay 0.13 NA 2.10−6 0.002 10−5 8.10−87 3.1099

Economical preferential attachment 5.23 1.93 0.006 0.60 0.009 10−12 3.1016

Economical clustering 2.30 3.33 0.95 0.21 0.05 8.10−5 106

P values that show no significant difference between model and data (P > 0.05) are highlighted in bold. We
also report the values of the parameters η and γ minimizing the energy function for each model.

Vértes et al. www.pnas.org/cgi/content/short/1111738109 9 of 10

www.pnas.org/cgi/content/short/1111738109


Table S4. Values of clustering, efficiency, and modularity
observed in brain functional networks compared with those
obtained in a model enforcing minimum wiring cost

Parameter Brain data Minimum cost model

Clustering 0.35 ± 0.03 0.47
Efficiency 0.29 ± 0.02 0.25
Modularity 0.53 ± 0.05 0.66
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