
Supporting Information
Chang et al. 10.1073/pnas.1117837109
SI Materials and Methods
Electron Microscopy. Electron microscopy was performed as pre-
viously described (1, 2).

Spermatozoa Staining and FACS. Acridine orange (AO) and pro-
pidium iodide staining of caudal spermatozoa and subsequent
analyses by FACS were performed as previously described (3).

Acid-Urea Polyacrylamide Gel Electrophoresis. Isolation of basic
nuclear proteins and acid-urea polyacrylamide gel electrophoresis
were performed as described (3) with modifications. Briefly, testis
lysates or sonication-resistant spermatids prepared by sonication
were extracted with 0.25% HCl (vol/vol) and precipitated with
3.5% trichloroacetic acid (TCA; wt/vol) overnight. Supernatants
were precipitated with 25% TCA (wt/vol), and the resulting pre-
cipitates were washed with acidified acetone and then acetone, and
dried. Samples were resolved on a 15% acid-urea polyacrylamide
gel, and bands were visualized by Coomassie blue staining.

Polysome and mRNA Localization Analyses. Postnuclear total testis
lysates were prepared by Dounce homogenization in polysome
extraction buffer (PEB) [60 mM NaCl, 15 mM Tris·HCl, pH 7.5,
15 mM MgCl2, 0.5% Triton X-100, 100 μg/mL cycloheximide
(CHX), 1 mg/mL heparin]. Cell lysates were prepared by addi-
tion of PEB and scraping. Lysates were layered over a 10–50%
sucrose gradient (wt/vol) and centrifuged at 36,000 rpm on the
SW 41 rotor (Beckman Coulter) for 2 h 15 min at 4 °C. Fractions
were collected from the top of the gradient and A254 for each
fraction was measured. RNA was extracted from 10% of total
lysates and 20% of each fraction and analyzed by quantitative
(Q)RT-PCR. Expression levels are represented as the percent-
age of transcript in each fraction compared with total lysate.

Microarray. Total testis RNA was hybridized to an Agilent 4 × 44k
Whole Mouse Genome Microarray according to the manufac-
turer’s protocol and scanned on an Agilent G2505B scanner. Ex-
pression levels of selected genes were further verified by QRT-
PCR analyses on RNA extracted from purified round spermatids.

Ribonucleoprotein Capture Assay. Ribonucleoprotein (RNP) cap-
ture assay was performed as previously described (4). Briefly, 2%
of four RNP or five polysome fractions isolated by sucrose gra-
dient was pooled and incubated with 100 μL blocked oligo(dT)-
cellulose [10 mg oligo(dT)-cellulose] beads blocked for 1 h at 4 °C
by incubating with binding buffer [50 mMHepes, pH 7.5, 150 mM
KOAc, 5 mM Mg(OAc)2, 2 mM DTT with 5% BSA] for 30 min
at 4 °C with agitation. Beads were collected by centrifugation at
500 × g and washed twice with binding buffer, and bound proteins
were eluted by boiling in Laemmli sample buffer. Twenty percent
of input and bound proteins was analyzed by Western blot.

Plasmids. Prm1 3′ UTR template for in vitro transcribed 32P-la-
beled riboprobe was generated by cloning the amplified Prm1 3′
UTR into SpeI-SacI sites in pBluescript (Stratagene). Luciferase 3′
UTR constructs were generated by PCR amplification of genomic
DNA isolated from mouse tissue using primers described in Table
S3 and cloning into SpeI-SacI sites of pMIR-REPORT luciferase
(Applied Biosystems). pcDNA3.1 (vector; Invitrogen), pCMV6-
EntryjArpc5-Myc-DDK (FLAG-Arpc5; Origene), and pRL-CMV
(Renilla luciferase; Promega) are commercially available.

RNA-Electrophoretic Mobility Shift Assay. 32P-radiolabeled mouse
Prm1 3′ UTR riboprobe (using SacI-digested linearized pBlue-

scriptjPrm1 3′ UTR construct as template) was prepared by in
vitro transcription as described previously (5). For gel shift assay,
10 μg recombinant Arpc5 or 10 μg BSA was incubated with
100,000 counts of 32P-labeled probe for 20 min on ice in elec-
trophoretic mobility shift assay (EMSA) buffer (20 mM Hepes,
pH 7.6, 75 mM NaCl, 1.5 mM KCl, 5 mM MgCl2, 175 mM su-
crose, 2 mM DTT). For supershift assay, 10 μg postnuclear total
testis lysate was preincubated with 5 μg of the appropriate
antibody for 30 min on ice in EMSA buffer. Then, 100,000
counts of 32P-labeled probe was added and incubated for an
additional 20 min on ice. Unincorporated probe was digested
with RNase A and T1 for 20 min at 30 °C. Samples were UV–

cross-linked and resolved on a 6% native acrylamide gel.

[35S]Methionine Incorporation. HeLa cells were transfected with
500 ng pcDNA3.1 or pCMV6-EntryjArpc5-Myc-DDK. After
48 h, cells were washed twice with 1× PBS and incubated with
methionine/cysteine-free media for 3 h at 37 °C. Cells were
trypsinized, counted, and resuspended in methionine/cysteine-
free media. [35S]Methionine was added to 200,000 cells. After
the indicated times, cells were washed twice with 1× PBS and
protein was extracted using 10% TCA (wt/vol), boiled, and
placed on ice. Protein precipitates were collected on GF/C filters
(Whatman), washed twice with 5% TCA (wt/vol), once with 70%
ethanol (vol/vol), and once with cold acetone. Filters were
placed in scintillation fluid and cpm was quantified.

In Vitro Translation Assay. In vitro translation assays were per-
formed as described previously (6). Briefly, the indicated amounts
of purified recombinant Arpc5 or BSA in MES buffer (20 mM
MES, pH 6.0, 200 mM NaCl, 2 mM DTT, 10% glycerol) were
added to the Rabbit Reticulocyte Lysate System (Promega).
Extracts were programmed with 100 ng capped luciferase mRNA,
in vitro transcribed using the mScript mRNA Production System
(Epicentre). Reactions were incubated for 30 min at 30 °C, and
luciferase activities were quantitated using the Dual-Luciferase
Reporter Assay System (Promega). To examine 80S and 48S
formation, reactions were preincubated with 10 μg recombinant
Arpc5 or BSA for 10 min on ice, followed by incubation with 1
mM CHX or 0.5 mMGMP-PNP for 3 min at 30 °C. Extracts were
then programmed with 20,000 counts of 32P-radiolabeled and
capped mRNA and incubated for 20 min at 30 °C. Translation
was monitored by fractionation using a 10–30% sucrose gradient
(wt/vol), followed by scintillation counting.

Coimmunofluorescence and RNA Colocalization. For the localization
of endogenous proteins, Arpc5 in NIH 3T3 cells was visualized
using anti-Arpc5 (1:100; Abcam) followed by Alexa Fluor 488-
conjugated goat anti-rabbit (green). Endogenous GW182 was
visualized using anti-GW182 (1:100; Santa Cruz Biotechnology)
followed by Cy3-conjugated goat anti-mouse (red). DAPI was
used to stain nuclei (blue). To examine the effect of Arpc5 over-
expression, HeLa cells were cotransfected with 500 ng vector
or FLAG-Arpc5. After 24 h, cells were trypsinized and counted,
and 50,000 were placed on coated microscope slides. Forty-eight
hours after transfection, slides were fixed in 4% paraformalde-
hyde, blocked with 10% goat serum, and incubated with human
GW182 antiserum 18033 followed by Alexa Fluor 488-conjugated
goat anti-human antibody (Invitrogen). Slides were then incu-
bated with anti-FLAG (Sigma) followed by Cy3-conjugated goat
anti-mouse antibody (Zymed). RNA colocalization studies were
performed as described (7).
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Fig. S1. Efficiency of Prm1-cre–mediated recombination and Dicer knockdown in postmeiotic germ cells. (A and B) PCR genotype analyses of tail genomic DNA
using primers F1 and R1, and testis genomic DNA using primers F1 and R2 as in Fig. 1A. Sequences and product sizes have been previously described (1). M,
molecular weight marker. (C) QRT-PCR analyses of cre expression in the testes of Prm1-cre mice. Prm1-cre transgene expression began on postnatal day 18, in
accordance with when round spermatids are first observed in mouse seminiferous epithelium (2). (D) Chart showing pup genotype percentages from matings
between Dicer FΔ male and control female mice. (E) QRT-PCR analyses of RNA isolated from purified round spermatids show significantly reduced (albeit not
completely absent) levels of Dicer in Dicer FΔ testes (n = 3; *P < 0.05). (F) Western blot analyses using anti-Dicer (1:200; Santa Cruz Biotechnology) antibody
further confirmed QRT-PCR results shown in E. Anti–β-actin (1:5,000; Sigma) was used as a loading control. Gel photographs are representative of three in-
dependent experiments (Left). Band intensities were quantified using ImageJ software (http://imagej.nih.gov/ij) and plotted (Right) (3) (n = 3; **P < 0.005). (G)
QRT-PCR analyses of RNA isolated from purified pachytene spermatocytes (PS) or Sertoli cells show no change in Dicer levels between control and Dicer FΔ testes
[n = 3; no significant change (ns)]. For E–G, isolation of germ/Sertoli cell populations was performed using a centrifugal elutriation approach, and purity was
determined by microscopic examination combined with QRT-PCR analyses using cell type-specific markers as previously described (4). Only germ/Sertoli cell
preparations with ≥90% purity were used for subsequent RNA and protein analyses (n = 3; pooled from four control or Dicer FΔ mice for each replicate). Please
note that ∼25% of Dicer (∼10% contamination from other cell types subtracted from ∼35% as quantified by QRT-PCR and Western blot analyses) is still present
in Dicer FΔ round spermatids. (H) Immunohistochemical analyses (anti-Dicer, 1:100; Abcam) showing cytoplasmic (perinuclear) expression of Dicer (arrowheads) in
testis sections. In agreement with QRT-PCR (E) and Western blot (F) results, the vast majority of round spermatids (RS) in Dicer FΔ testis sections lacked the Dicer
staining observed in control testis sections (white boxes, magnified views Right), although some round spermatids in Dicer FΔ testis sections displayed minimal
Dicer staining, suggesting that residual Dicer protein was present in these cells. Consistent with QRT-PCR results shown above (G), Dicer staining in spermatocytes
(PS; black solid boxes, magnified views Right) and Sertoli cells (SC; black dashed boxes, magnified views Right) were similar in control and Dicer FΔ testis sections.
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Fig. S2. FACS analyses of AO- and PI-stained sperm heads. (A) Sperm from control mice were untreated (Left), treated with trypsin (Center), or sonicated
(Right) and subjected to AO staining (1) followed by FACS. Regions containing intact sperm (S), free sperm heads (H), and free sperm tails (T) are marked. Gated
sperm heads are further analyzed in Fig. 2 B and C. (B) Percentage of nongated/total events in Fig. 2C (n = 3; **P < 0.005). (C) FACS of sonicated PI-stained
sperm heads. PI intercalates partially compacted DNA more efficiently (2).
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Fig. S3. Steady-state mRNA levels and testis basic nuclear protein (BNP) processing are not altered in Dicer FΔ mice. (A) QRT-PCR analyses of total testis RNA
using primers described in Table S3. Expression levels are normalized to Rpl19 (n = 5). (B) Acid-urea polyacrylamide gel electrophoresis of TCA-extracted basic
nuclear proteins from total testis (BNP) and sonication-resistant spermatids (SRS). H1, histone H1; P1, protamine 1; P2, protamine 2; TP1, transition protein 1;
TP2, transition protein 2. (C) Polysome profile of postnuclear total testis lysate, fractionated, and A254 measured (Upper). Western blots on pooled fractions
were performed using anti-S6 (Lower). Dotted line indicates separation between complexes. (D and E) QRT-PCR of fractionated lysates was performed using
the indicated primers. Dotted line indicates separation between complexes. Percentages indicate the amount of the specified mRNA in the fraction compared
with the total amount of the specified mRNA in all fractions.
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Fig. S4. Arpc5 is targeted by miR-22/883a-5p and interacts with Prm1 mRNA. (A) Validation of Arpc5 as a miR-22/883a-5p target. HeLa cells cotransfected with
indicated luciferase-Arpc5 3′ UTR construct and miRNA mimic (100 nM; Qiagen). Values are normalized against Renilla luciferase activity (n = 4; *P < 0.05, **P <
0.005). (B) RNA-EMSA supershift of postnuclear total testis lysate using in vitro transcribed radiolabeled Prm1 3′ UTR riboprobe and anti-Arpc5 antibody. For
supershift/retardation of observed complexes, control IgG (mouse, lane 1; rabbit, lane 2; Santa Cruz Biotechnology), anti-TRBP (lane 3), or anti-Arpc5 (lane 4)
antibodies were incubated with lysate before addition of radiolabeled probe. Arrowheads indicate relevant complexes inhibited by anti-Arpc5 preincubation.
Stars indicate nonspecific complexes. Supershift assay with commercially available antibody against TRBP, which is known to interact with Prm1 3′ UTR (1), did not
result in clear migration/inhibition of any relevant protein–RNA complexes. Although one band just below complex II in the anti-TRBP lane (lane 3) was always
observed, it was not clear from which complex this band originated. Gel photograph is representative of three independent experiments.
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Table S1. Epididymal sperm morphology

Morphology Control (%) Dicer FΔ(%)

Normal 91.2 ± 1.2 82.0 ± 2.1*
Abnormal 10.1 ± 1.2 18.0 ± 2.1*

Rounded or bent head 5.2 ± 0.6 10.8 ± 1.5*
Two-headed 0.1 ± 0.1 1.0 ± 0.2*
Kinked or other tail abnormalities 4.8 ± 0.8 6.3 ± 1.3

Caudal epididymal sperm from three control and three Dicer FΔ mice
were counted in triplicate. At least 1,000 total spermatozoa were counted
for each mouse.
*P < 0.05.

Table S2. Highly altered genes in Dicer FΔ postmeiotic germ cells

Gene Fold change Function and expression Refs.

Arpc5 7.59 Involved in vesicle trafficking and cell polarity by stimulating actin filament assembly (1–3)
Catsperb 2.05 Required for sperm hyperactivation; testis-restricted expression in spermatocytes and

spermatids
(4)

Ddr2 −3.56* May function in endocrine regulation of the testis; deletion causes sterility (5)
Fus −2.53* Assists in chromosome pairing during meiosis and may also play a role in DNA repair;

knockout males are sterile
(6, 7)

Grtp1 2.60 Possible function in cell cycle and mitosis; expression is most abundant in testis
and increases postpuberty

(8)

Gsr 3.34 Protects sperm from reactive oxygen species through glutathione recycling (9, 10)
Gss 2.75 Protects sperm from reactive oxygen species through glutathione synthesis (9, 10)
Map2k7 36.48 Activator of the JNK pathway and downstream target of Rac1; testis-restricted

expression of an alternatively spliced transcript
(11, 12)

Ptpro −2.41* Receptor-type tyrosine protein phosphatase negatively regulated by estrogen and
down-regulated by the miR-17-92 cluster; highly expressed in testis

(13, 14)

Ptprv 37.87 Receptor-type tyrosine protein phosphatase with a possible role in the dissociation of the
blood–testis barrier; expressed in Sertoli cells

(15, 16)

Sord 2.01 Allows sorbitol to be used as an energy source for sperm motility and capacitation; may be
posttranscriptionally regulated

(17)

Spata7 −2.40* Unknown function; testis-restricted expression in primary spermatocytes (18)
Stk25 −2.22* Involved in perinuclear localization of Golgi and may control cell polarity; highly expressed

in testis
(19, 20)

Genes listed were found to be highly altered (up-regulated or down-regulated) in Dicer FΔ mice testis. Values in “fold change” column represent validation
of microarray data (independent analyses of total testis RNA of two control and two Dicer FΔ mice) using QRT-PCR unless stated. QRT-PCR analyses were
performed on purified round spermatid RNA pooled from four mice.
*Value from microarray analyses.
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Table S3. Primers used in this study

Primer Species Type Sequence

Acrv1 Mouse QRT-PCR 5′-TCAGCAACTTTCAAGCGAGTAT-3′
5′-CTCCTGAAGAGTGCTCACCTG-3′

Arpc5 Mouse QRT-PCR 5′-GTGCAGGCAGCATCGTCTT-3′
5′-CATTAGGAGGTCCACACCGTT-3′

Catsperb Mouse QRT-PCR 5′-AGGTTCATCGTTTCAAGTTTCCAGTCAC-3′
5′-ACAGTTGTACTTGAGGTGAGTCCAG-3′

cre P1 bacteriophage QRT-PCR 5′-GCGGTCTGGCAGTAAAAACTATC-3′
5′-GTGAAACAGCATTGCTGTCACTT-3′

Dbil5 Mouse QRT-PCR 5′-CCCAGGGCGACTGTAACATC-3′
5′-GCAATGTAGATCCTCATGGCAT-3′

Grtp1 Mouse QRT-PCR 5′-TCGATCCGTATGGGTTTGAAAG-3′
5′-TCGCCCTCTTGGTGAGTATCA-3′

Dicer1 Mouse QRT-PCR 5′-GGTCCTTTCTTTGGACTGCCA-3′
5′-GCGATGAACGTCTTCCCTGA-3′

Gsr Mouse QRT-PCR 5′-CCACGGCTATGCAACATTCG-3′
5′-GATCTGGCTCTCGTGAGGAA-3′

Gss Mouse QRT-PCR 5′-CAAAGCAGGCCATAGACAGGG-3′
5′-AAAAGCGTGAATGGGGCATAC-3′

Hp Mouse QRT-PCR 5′-GCTATGTGGAGCACTTGGTTC-3′
5′-CACCCATTGCTTCTCGTCGTT-3′

Map2k7 Mouse QRT-PCR 5′-ATGGAGAGCATCGAGATTGACC-3′
5′-CGCCGCATTTGCTTAACAG-3′

Prm1 Mouse QRT-PCR 5′-CCGTCGCAGGCGAAGATGTC-3′
5′-CACCTTATGGTGTATGAGCGG-3′

Prm2 Mouse QRT-PCR 5′-GCTGCTCTCGTAAGAGGCTACA-3′
5′-AGTGATGGTGCCTCCTACATTT-3′

Ptprv Mouse QRT-PCR 5′-CCAGGACTCTTTGGCCCAG-3′
5′-AGGGCATAGTCAAATCCACCT-3′

Rhox5 Mouse QRT-PCR 5′-CACCAGGACCAAAGTGGCC-3′
5′-GGTATGGAAGCTGAGGGTT-3′

Rpl19 Mouse QRT-PCR 5′-CTGAAGGTCAAAGGGAATGTG-3′
5′-GGACAGAGTCTTGATGATCTC-3′

Sord Mouse QRT-PCR 5′-TGGGAGCATGGACGAATTGG-3′
5′-CAACCCGATCTCCTGGTTTCA-3′

Sult1e1 Mouse QRT-PCR 5′-ATGGAGACTTCTATGCCTGAGT-3′
5′-ACACAACTTCACTAATCCAGGTG-3′

Sycp3 Mouse QRT-PCR 5′-AGCCAGTAACCAGAAAATTGAGC-3′
5′-CCACTGCTGCAACACATTCATA-3′

Tnp1 Mouse QRT-PCR 5′-GAGAGGTGGAAGCAAGAGAAAA-3′
5′-CCCACTCTGATAGGATCTTTGG-3′

Tnp2 Mouse QRT-PCR 5′-GAAGGGAAAGTGAGCAAGAGAA-3′
5′-GCATAGAAATTGCTGCAGTGAC-3′

let-7i* Mouse QRT-PCR 5′-CTGCGCAAGCTACTGC-3′
miR-22 Mouse QRT-PCR 5′-AAGCTGCCAGTTGAAGAA-3′
miR-24 Mouse QRT-PCR 5′-CTCAGTTCAGCAGGAACA-3′
miR-34a Mouse QRT-PCR 5′-TGGCAGTGTCTTAGC-3′
miR-127 Mouse QRT-PCR 5′-TCGGATCCGTCTGAGCT-3′
miR-143 Mouse QRT-PCR 5′-TGAGATGAAGCACTGTAGCTC-3′
miR-201 Mouse QRT-PCR 5′-TACTCAGTAAGGCATTGTTCTT-3′
miR-741 Mouse QRT-PCR 5′-TGAGAGATGCCATTCTATGTA-3′
miR-744 Mouse QRT-PCR 5′-GGGCTAGGGCTAACAGCA-3′
miR-883a-5p Mouse QRT-PCR 5′-TGCTGAGAGAAGTAGCAGTT-3′
Snora74a (U19) Mouse QRT-PCR 5′-TGTGGTGCCCGAGATCGT-3′

5′-TGGGAGCCGACCCTTAGTAA-3′
Arpc5 3′ UTR 33–218 Mouse Cloning 5′-GGACTAGTGGGAGTTGCTGGTATAAAGACC-3′

5′-CGAGCTCCAAACATCCCCACTGAGAC-3′
Arpc5 3′ UTR 337–493 Mouse Cloning 5′-GGACTAGTCTGAGAGATGTGATCAAAGTTG-3′

5′-CGAGCTCCTACTTGCCCTGGAAACAC-3′
Prm1 3′ UTR 69–152 Mouse Cloning 5′-GGACTAGTCACATCTTGAAAAATGCCAC-3′

5′-CGAGCTCGAGTTTTCAACATTTATTGACAG-3′

Primer sequences were obtained from PrimerBank (1).
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