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Supplementary Experimental Procedures 

Construction and Treatment of Strains to Measure Gal1 Promoter Noise 

An estradiol inducible system similar to that constructed by Louvion et al. (1993) was integrated at the 
LEU2 locus in a w303a strain background. The construct consists of the Adh1 promoter driving 
GAL4DBD (1-93AA) fused to the human estrogen receptor hormone binding domain and the activation 
domain of MSN2(1-303AA)). A GAL1 promoter driving YFP was then integrated at the HIS3 locus, and 
a second GAL1 promoter driving either YFP or mCherry was integrated at the TRP1 locus.    Strains were 
grown at 30C shaking to saturation, diluted 1:200 into SDC and grown for 12hrs, followed by a dilution 
of 1:200 into SDC with estradiol ranging from 100nm to 3.7nm in a log1.6 dilution series in 96 well 
plates (Costar).  The cells were allowed to grow for 8hrs before cytometry measurement (OD~=0.05).  
Intrinsic and extrinsic noise values were computed as described below. 

Heat Shock Survival 

To induce a range of MSN2/4 target gene expression a constitutively active allele of MSN2 (5A) [] was 
placed under a GAL1 promoter and induced using an estradiol inducible system in a strain with MSN2/4 
deleted (msn2::NAT, msn4::KAN).  These cells were induced with estradiol concentrations from 1 to 
100nm and gown at 30C for 6hrs in 200ul of SDC in 96 well plates, these inductions resulted in 8-log2s 
of diversity in mean expression of MSN2 target gene HSP12-RFP.  50ul of the induced cells were 
measured on the flow cytometer, the remaining 150ul were heat shocked to 50C and 5ul sampled into 
200ul of SDC at various times.  These cells were grown for 12-16hrs at 30C, the number of cells in each 
well measured by cytometry and the ratio of cells at each temperature and MSN2/4 expression were 
calculated to give survival rates.  

Overexpression of PDE2 and MSN2 

To over-express PDE2 or MSN2(5A), the appropriate sequence was amplified from the genome and 
placed in a vector with a GAL1 promoter, this construct was then integrated at the TRP1 locus in cells 
expressing an estradiol inducible system as described above.  Cells were induced using concentrations of 
estradiol ranging between 1 and 200nm in SDC for 6hrs before measurement.   

Construction and Treatment of One GFP and Two GFP strains for Noise Decomposition 

High-expressing genes were selected from the GFP library and checked for growth phenotypes (see table1 
for strain list). These strains were mated to an SGA strain with the TRP1 gene deleted by insertion of a 
URA marker with the promoter of TFS1 driving mKate2 (MATα his3 leu2 met15 ura3 can1::STE3pr-
HIS3 lyp1::STE2pr-LEU2 TRP1::TFS1pr-mKate2(Ura3MX)). Diploids were then selected for in SD–
Trp/-Ura.  The successful diploid strains were sporulated in liquid spo medium at room temperature for 5 
days, then transferred to haploid selective medium (SD-Lys-Arg-His-Ura-Leu+SAEC+Canavanine).  Two 
subsequent dilutions into haploid selective medium (total dilutions 1:100000) resulted in pure populations 
of haploid MATα strains (MATα his3 leu2 met15 ura3 can1::STE3pr-HIS3 lyp1::STE2pr-LEU2 
TRP1::TFS1pr-mKate2(Ura3MX), X::GFP(HIS3MX)), where X is the gene tagged with GFP. 



 

 

Following sporulation, strains were mated in liquid to either the original GFP strains, or to a BY4741 
strain with a his3::TDH3pr-mCherry(HIS3MX).  After overnight growth in YPD, selection for diploids 
was carried out with SD–Trp/-Ura.  This resulted in two sets of diploid strains, one with two GFPs and an 
equivalent diploid strain (1XUra3, 2xHis3) with only one GFP copy.  Additionally, the diploid strain 
harboring one GFP copy is labeled with a bright RFP such that it is distinguishable from the 2XGFP 
strain in a mixed culture. When co-cultured the two strains could be separated well in silico by RFP 
expression level (<1% of cells were ambiguous in all cases).  

The 1-GFP and 2-GFP strains were then mixed (~1:1) in shallow 96 well plates (COSTAR) and grown to 
saturation overnight in 200ul SD-Trp/Ura.  They were then diluted 1:200 and grown for 12hrs, followed 
by a second dilution of 1:200, which was allowed to grow for 8hrs before measurement (final OD ~0.05-
0.1).  In all cases, growth was at 30C with orbital shaking.   

Dual Color Strain Construction and Covariance Measurements 

For crossing to generate dual color strains, individual RFP marked strains were were constructed by PCR 
based homologous insertion of an RFP protein (mCherry or mKate2) at the C-Terminal end of the open 
reading frame with a URA3 marker immediately 3’.  Reporter strains marked with mCherry (or mKate2) 
were crossed to strains from the GFP library (Open Biosystems), with a selection step for diploids in SD -
Ura/-His. Pure diploid populations were verified as containing no cells lacking either fluorophore using 
flow cytometry.   

Briefly, a RFP marked strain was gown up in 5ml YPD, and GFP strains grown in 96 or  384 well plates 
(200 or 80ul of YPD).  These cells were mixed in liquid on 96 or 384 well plates and incubated at 30C for 
24hrs to allow for mating.  Diploids were then selected by 1:8000 fold dilution into SD-URA-HIS using a 
Biomech robotic system. These strains were then diluted 1:32000 using a Biomech robotic system and 
grown for 20-22 hrs before measurement (final OD ~0.05-0.1), the 96 or 384 plates were measured using 
an HTS autosampler on the LSRII cytometer (BD).  Plate growth was at 30C with orbital shaking on Elim 
heater shakers. 

Hetrozygous Deletion Strain Construction and Analysis 

Strains for HSP12 and PGM2 covariance measurements were constructed by deletion of the stated genes 
(IRA2, GPB, PDE2, RAS2) by homologous recombination with a NAT marker from a PGM2-mCherry 
MATα strain (MATα his3 leu2 met15 ura3 can1::STE3pr-HIS3 lyp1::STE2pr-LEU2 PGM2-mCherry 
(URA3) YFG::NAT).  This strain was then crossed to (MATa his3 leu2 met15 HSP12-GFP(HIS3)) to 
construct heterozygous strains expressing PGM2-mCherry and HSP12-GFP and selected for in SD-HIS-
URA. 

To construct diploids hetrozygous strains, a MATα strain with tagged copies of ARG4 and CIT1 (MATα 
his3 leu2 met15 ura3 can1::STE3pr-HIS3 lyp1::STE2pr-LEU2 CIT1-mCherry (URA3) ARG4-GFP 
(HIS3)) was crossed to deletion strains from the Yeast deletion collection (MATa his3 leu2 met15 
YFG::KAN).   Diploids were selected for in two steps with an initial selection in YPD+G418(200ug/ml) 
followed by selection in SD-URA+G418(500ug/ml).  A complete list of these strains is in table S4. 



 

 

To study the effects of heterozygous deletions of key genes on the covariance between ARG4 and many 
different GFP tagged genes, we crossed an ARG4-mCherry strain with a specific gene deletion (MATα 
his3 leu2 met15 ura3 can1::STE3pr-HIS3 lyp1::STE2pr-LEU2 ARG4-mCherry (URA3) YFG::NAT) to 
the 182 strains used in the covariance matrix analysis.  Selection for diploids was in SD–URA-HIS. 

These strains were inoculated into shallow 384 well plates (Fisher) and grown to saturation overnight in 
80ul SD-URA/HIS.  They were then diluted 1:32000 using a Biomech robotic system and grown for 22-
24 hrs before measurement (final OD ~0.05-0.1), the 384 plates were measured using an HTS 
autosampler on the LSRII cytometer (BD).  In all cases, growth was at 30C with orbital shaking.  Flow 
cytometery data for these strains was collected, the data analyzed as described below. 

Data Processing and Analysis of Flow Cytometry Data 

Flow cytometry data was first processed to remove outliers by filtering the data using a minimum 
covariance determinant method [Rousseeuw and Van Driessen, 1999] (~80-90% of original cells are 
kept).  Other approaches to filtering data or calculating 'robust' measures of variance and mean (e.g. Mean 
Absolute Deviation or S-estimators) were explored and gave similar, though less reproducible, outcomes.  
In practice these approaches proved similar to gating as both remove the most extreme outliers.   

To test that filtering was not artificially inflating or reducing measured correlations or variance, we 
generated random samples of a given size drawn from a large set of cells (~1 million) and calculated 
medians, variance, and covariance.  A sample was either MCD filtered or gated by forward and side 
scatter such that an equivalent percentage of the population is included.  All methods used converged to 
similar medians and variances as the MCD filtering method.  

Second, to correct for variations in cell size (and cell cycle), we utilized forward and side scatter 
information (FSC and SSC). Traditionally this is done by selecting only a subset of cells with similar 
size/shape (gating), and calculating means and covariances from this subset of data [Newman et al., 
2005].  As the gate size becomes infinitely small (i.e. all cells within the gate have identical forward and 
side scatter properties), any covariance measured will be independent of these parameters.  On the other 
hand, as the gate becomes smaller and the number of measured cells decreases errors magnify. Further 
gating typically discards the vast majority of the data (80-99% in some reports). 

We addressed this problem in two ways. First, we viewed the measurements from a particular experiment 
as a population from which to draw samples.  We selected a single cell randomly and found the N cells 
that are most similar to it in forward and side scatter space (based on a distance metric with a determined 
threshold). We then computed variance and covariance from this sample of cells. Note that by taking a 
fixed number of nearby cells, the error in computing the covariance for each group is constant, but the 
degree of similarity between cells within a group is not. By repeating this procedure many times (500 was 
sufficient to produce sampling errors in measured covariance of <1%), robust estimates of variance and 
covariance were computed.  The size of N was empirically set at 100, as further reductions result in 
negligible changes in covariance.  We will refer to this procedure as multi-gating.   

The second approach is to view the flow-cytometry (GFP, RFP, FSC, SSC) measures as a multi-
dimensional dataset and determine using partial correlations the covariance between GFP and RFP (or 



 

 

variance within GFP or RFP) measurements given the correlation due to cell size as measured by side 
scatter. This is similar in spirit to a recent analysis of cell-to-cell variation in flow cytometry data [Rinott 
et al., 2011].  This assumes relatively linear and normal relationship between side scatter and 
fluorescence.  In practice, this approach results in estimates for mean and noise that are similar to a simple 
linear transformation of the data by dividing by side scatter or other measures of cell size which other 
groups have adopted [Murphy et al., 2010;, Raser and O’Shea, 2005]. 

Multi-gating and partial covariance based approaches for estimating noise and covariance in practice are 
nearly equivalent (R^2 in a given plate is typically ~0.97).  Partial covariance is however much less data 
intensive and typically requires no more than 1000-2000 cells to produce good estimates.  A comparison 
between partial correlation and mutual information also found very good agreement (R^2 of 0.92, 
N=192), suggesting that this data is well explained by linear relationships. 

To evaluate our ability to measure noise and covariance reproducibly, we examined the error across 
biological replicates (for example, duplicate correlation measurements of a large set of genes with 
ribosomal reporter RPL17B (S1)).  These measurements suggest a median error of ~0.025 (R^2 of 
replicates of 0.92).  The variation in correlation could result from intrinsic measurement errors or 
variation in the cellular state of biological replicates.  Our metric of sensitivity showed somewhat greater 
variation (R^2 of 0.88, N=362), probably as it incorporates multiple potentially noise measures (two 
covariance measures, two means).  Similar errors were observed for stress reporter replicates (correlation 
R^2 of 0.90, sensitivity R^2 0.87, N=365). 

 

Formulas for Noise Decomposition Using the One GFP and Two GFP Strains 

To extract values for extrinsic and intrinsic noise from fluorescent measurements in the 1-GFP and 2-GFP 
strains, we used the following formula:  

),(*2)(*2)( 21121 GFPGFPCovGFPVarGFPGFPVar   

Here, 1GFP and 2GFP are the two (identical) copies in the 2-GFP diploid strains. 

Therefore, )var()var( 21 GFPGFP   and ),( 21 GFPGFPCov is given by  
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We define extrinsic noise as: 
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 where we have again used the fact that that )(*2)( 121 GFPmeanGFPGFPmean  .  This finally 

gives the expression for extrinsic noise as:  
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And therefore, intrinsic noise is given by:  
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The quantities above were computed after subtraction of background fluorescence, which was obtained by 
measurement of isogenic diploid strains without any GFP tagged proteins.  

Error in measurement of noise components was computed using replicate measurements of the dataset.  
The R2 between replicate measurements of total noise (CV) was 0.96, while that for extrinsic noise was 
0.85.  Specific wells were discarded if they did not meet criteria for number of cells, absence of non-
florescent cells, and clear separation of the two populations; remaining replicates were averaged (table 1). 

Extrinsic Noise Error Models and Number of Noisy Genes 

The CV for extrinsic noise showed similar reproducibility to the covariance measurements (R2 of 0.85 for 
extrinsic noise, N=468, S1).  Residuals from a least square fit to replicates of the extrinsic noise 
measurements showed a Gaussian distribution centered on zero with a standard deviation of 0.022.    

To estimate the number of genes with measurably elevated (or reduced) noise, we noted that the 
histogram of extrinsic noise values [S1B] could be represented as the convolution of two Gaussian 
distributions: the first is centered around 0.1 and the second contains the subset of genes with greater 
extrinsic noise.  This would be consistent with a global noise ‘floor’ experienced by all genes, with a 
fraction of genes experiencing noise greater than this floor value. 

To verify that the data is well represented by this model, we pursued two strategies to estimate the mean 
and standard deviation of this noise ‘floor’.  First, we estimated the mean by finely binning the data and 
selecting the largest bin (the mode) as the mean.  The standard deviation was estimated by subtracting this 
value from the dataset, data points with less than zero extrinsic noise after this operation likely represent 
the  ‘noise’ in measurement so we reflected them across the zero line and computed the standard 
deviation of this transform.  Alternatively, we used an estimate of measurement noise computed from 



 

 

replicate data.  The two approaches gave indistinguishable results and produced an excellent Gaussian fit 
to the first peak in the extrinsic noise histogram.  This suggests that points within this distribution are 
consistent with measurement noise, whereas data falling outside represents genuine elevation of extrinsic 
noise.  Using this approach, we found that 84 genes representing ~1/5 of the dataset had elevated extrinsic 
noise (>2*std + median, Table S1).   

Consistent with this characterization, extrinsic noise for replicates of the 25% (N=108) of genes with 
lowest extrinsic noise agreed with an R2 of 0.0701, whereas the replicates of the 25% highest extrinsic 
noise genes agreed with an R2 of 0.9145.  We do not observe the same differential for intrinsic noise—
genes with the highest intrinsic noise agreed with R^2 of 0.90 and the lowest with 0.73—suggesting that 
only extrinsic noise exhibits a floor in expression noise and that intrinsic noise has measureable signal 
across its dynamic range.  

Metrics of Relatedness among Genes from Single-Cell Measurements (S-score) 

We assume that in an exponentially growing population, gene expression can be approximated as a linear 
process.  The expression of a given gene in a single cell (bi) is then equal to the sum of a basal expression 
(βi), the activity of upstream signaling pathways in that cell (xi) multiplied by the gene’s susceptibility to 
that pathway (α), and a noise term (εi). The following derivation will show that it is not possible to get an 
absolute value for α from single cell noise data, but that it is possible to measure the strength of gene b’s 
response to pathway x relative to a reporter gene (a) which is simultaneously measured in the same cell 
(i.e. you can find αb/αa).  We define: 
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The covariance of a and b can also be computed:  
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Now, if we assume that variance in gene expression is proportional to mean expression level of the gene, 
then the total variance in a and b is given by   
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Where the first term represent the pathway noise from x, and subsequent terms represent intrinsic noise 
(whose variance is proportional to mean expression – See Fig1), and extrinsic noise from other processes 
unrelated to x.  The correlation between a and b can be written as: 
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Note that the correlation depends on the mean expression level of a and b, indicating that as the mean 
expression level of the genes increase their correlation will also decrease.  Correlation has a fundamental 
bias towards weakly expressed genes, and is therefore problematic as a measure of relatedness.  
Correlation does however describe in an unbiased way the proportion of variance shared by a given gene 
pair and is useful to compare across different genes.  To achieve a measure of relatedness independent of 
mean expression we turn to the covariance. 

 

 

 

 

 

From the covariance we define two metrics of relatedness, the gain (G) of a particular gene relative to a 
given reporter, and the sensitivity (S) of a gene to fluctuations in the reporter as a proportion of its mean.  

To derive the expressions above, we made two main assumptions. First, we assumed that gene expression 
could be modeled as a linear process. This assumption seems to be warranted for the Msn2/4 regulated 
genes which respond linearly to changes in the activity of Msn2/4.  Indeed when a strain containing two 
distinct Msn2/4 reporters is tested under many different conditions (deletion strains) the two reporters 
across experiments were linearly related (R2 =0.59, data not shown). 
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The second assumption is that the noise terms (ε) are independent.  In our experiments, these terms 
represent noise in measurement and also factors not explicitly accounted for in the model of gene 
expression such as global correlators.  For example, cell size (or transcriptional/translation capacity) can 
uniformly affect the expression of all genes in a given cell and therefore induce interdependence.  We 
attempted to control for this explicitly in our flow cytometry data analysis by only processing cells with 
relatively equivalent dimensions in forward and side scatter.   

Supporting this assumption, we find that on average the correlation of the ~700 genes we measured to the 
stress responsive gene Pgm2 was 0.0471 (+/-0.0022), looking at ribosomal genes only this correlation 
drops further to 0.0113 (+/-0.0042).  These results suggest that most of the noise from global fluctuations 
has been accounted for with our data analysis approach, validating that our normalized covariance reports 
on pathway interactions between genes. 

A General Linear Framework for the Relationship between Genes in Different Transcriptional 
Modules 

We can extend and generalize the above analysis to deal with genes which share upstream regulatory 
pathways, but not specific transcription factors.  As our example we focus on the MSN2 stress responsive 
pathway as it is a noisy system amenable to experimental manipulation. 

Let’s consider a simple model of gene expression for PGM2 (target gene for Msn2) and some gene G in a 
single cell. This model is similar to the model we use to derive the ‘S-score’, but contains some additional 
terms to account for experimental manipulations to the system. We write:  
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Here, ix  and iy  are active transcription factors (TF) upstream of these genes in cell i,   is the sensitivity 

of PGM2 or ARG4 to their TFs, iC  is a measure of transcriptional capacity in that particular cell (often 

referred to as cell-to-cell global variation), and ε terms represent variability not specific to any process.  
We express active TF as an average value perturbed in every cell by two sources of variability: one 
originating from the regulatory pathway upsteam of the TF and the other originating from fluctuations in 
TF expression. Therefore, we write:  
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We assume that the fluctuations are uncorrelated. More precisely,  
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Case 1: 

If 2PGM and G have independent TFs and uncorrelated signaling pathways upstream of the TFs, then  

2*2***),2( caga MSNAGPGMCov   

This correctly recapitulates that these two genes should only be correlated through global fluctuations.  

Case 2:  

If 2PGM and G have independent TFs and partially correlated signaling pathways upstream of the TFs 
(that is they are influenced by fluctuations in signaling pathways upstream of Msn2, but also fluctuations 

coming from some other uncorrelated pathway z), then zixiyi   . In this case, 
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Here, )var(2
xx   . In this case, which corresponds to 4ARG , an experimental assay which titrates 

increasing amounts of aMSN2 is expected to show a linear increase in ),2( GPGMCov  (first term of 

expression above) as a function of 2PGM  mean expression ( 2PGM ). Since signaling upstream is 
unaffected, the second term is an offsetting constant.  

In contrast, upon titration of a component of signaling upstream in the PKA pathway (e.g. PDE2), one 

one would expect 
2

x to change. As a result, a nonlinear change in  ),2( GPGMCov  is expected as a 

function of  2PGM . 

Case 3:  

If 2PGM and G are both targets of Msn2 (and by definition have the same signaling pathway upstream), 
then  
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This case corresponds to 12HSP . Here, direct manipulation of aMSN 2  should increase 

)12,2( HSPPGMCov  quadratically as a function of 2PGM . However, since such a such a 



 

 

manipulation would be expected to change 
2

  (last term in equation above), then a linear relationship 

between )12,2( HSPPGMCov  and 2PGM  would NOT be expected as aMSN 2  changes.  

On the other hand, titration of a component of signaling upstream in the PKA pathway (e.g. PDE2), 

should change 
2

x but not 
2

 . Given the structure of these equations, this case is not differentiable 

from titration of aMSN 2 .  

These predictions can be verified by placing MSN2 (constitutively active) under the control of the GAL1 
promoter and titrating its expression with an Estradiol inducible system . In this assay, the DNA binding 
domain of the GAL1 activator GAL4 is fused to the ligand binding domain of the human estrogen 
receptor. The nuclear localization and activity of this fusion transcription factor is modulated by estradiol  
(see supp. Methods).  Using this assay, we indeed determined that overexpression of MSN2 results in 
linear (r2=0.93) increase of the COV(PGM2, ARG4) as predicted by the model. In contrast, 

)12,2( HSPPGMCov increased nonlinearly and non-loglinearly as a function of 2PGM  (fig. S4).  

These results argue that perturbations that produce non-linear changes in covariance are perturbations 
which affect both genes and arise from pathways common to these genes, in this case the PKA pathway 
and more generally experimentally validate our simple linear approach to covariance analysis. 

 

Covariance Matrix Analysis 

To obtain the covariance matrix described in Figure 3 of the main text, we normalized every covariance 
by dividing by GFP and RFP mean expression– (the RFP is nearly constant across any given set of 
measurements we obtain very similar results if we normalize by GFP expression alone).  Data was 
generally collected in duplicates. Replicates disagreeing by more than 30% were discarded, and all 
remaining replicates were averaged. From this analysis we obtained a 182 by 45 matrix of interaction 
scores (Table S3).  This matrix was hierarchically clustered using a Pearson correlation metric for 
distance. 

To analyze this data with principal component analysis, a row-wise correlation of this matrix was 
computed to give a 182x182 correlation matrix (using the Matlab corrcoef function set to ignore NAN 
values) on which hierarchical clustering (using a correlation distance metric and the Matlab linkage 
function with 'complete'  settings) and PCA analysis (PCACOV function) was performed using standard 
Matlab functions.  
 

Query genes tagged with mCherry were as follows: ADE6, ARG4, ATP1, CAR2, ENO1, ENO2, GAP1, 
GOR1, HSP104, HSP12, HSP26, INO1, MET6, PGM2, SER3, SOD2, TDH2, URA1, ADE4, AGP1, 
ARG8, ATP14, ATP5, CIT1, FAS1, HOM2, HOR2, HSP42, HSP82, HTB2, LYS21, MET14, MUP1, 
PDR16, POR1, PRX1, SAM1, SAM2, SER33, SOL4, SSB2, SUR7, TSA1, URA4, ZWF1.   

The Amino Acid group consisted of: MET6, SER1, BNA3, MET10, ARG4, GAP1, AGP1, YOL098C, 
TIF4632, HIS4, PFK2, HTB1, SSA4, ARG5,6, BAT2, ACO2, LYS21, SAM3, ARG8, ARG3, MET2, 



 

 

LYS20, SER33, MET22.  The Mitochondrial group: FAA3, COX15, DDR48, LSC2, NDI1, COR1, 
SOD2, HEM15, CIT1, MDH1, ATP14, ATP4, ATP3, PUT2, LPD1, PAM17, ALO1, ISU1, RUD3, 
STR3, GCV1, MSS51, RIB4, MRPL13, ISU2, ABF2.   And the stress response group of: GDB1, GPH1, 
TPS3, HSP104, SSA1, ENO1, GPD1, CWP2, PIL1, PBI2, YDL124W, GSY2, PGM2, GLK1, HOR2, 
TPS1, RTC3, HOR7, NOP8, HSP12, TDH1. 
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Figure S1  Related to Figure 1 

Measurements of extrinsic noise using the one FP strategy are reproducible and reveal a subset of genes 
which are extrinsically noisy.  (a) A scatter plot of the log2 expression of strains with one and two copies 
of YFG-GFP.  (b) Replicates of noise measurements show strong reproducibility and a Gaussian error 
structure (inset). 
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Figure S2. Related to Figure 2 

S-score measurements are reproducible and genes which show high PGM2 S-score are enriched in 
MSN2/4 binding sites (STRE). (a) Biological replicates of S-Score measurements (N=362).  (b) 
Enrichment of genes  with S-scores greater than 0.3 (N=53) in genes with one, two, or three STRE 
binding sites in their promoters, error bars represent standard error. 
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Figure S3. Related to Figure 3 

Variation in MSN2/4 activity has phenotypic consequences. (a) Survival of cells after a 50C heat shock as 
a function of their basal Hsp12 expression. Cells with the endogenous copies of MSN2/4 deleted were 
transformed with an estradiol inducible constitutively active copy of MSN2 (constitutively active 5A 
allele). The cells were induced by addition of estradiol to a range of HSP12-RFP levels, and then exposed 
to heat shock at 50C for the indicated times. Survival was accessed by number of viable cells in each 
population after recovery at 30C, error bars represent std. error of triplicate measurements. (b) Survival of 
cells as a function of their basal PGM2 levels. PGM2-YFP expression was determined for individual cells 
in early (OD=0.05 (red)) mid-exponential phase (OD=0.5 (blue)). Cells were then heat shocked (50C, 20 
min), and stained with propidium iodide to detect dead cells.  For the mid-exponential phase population, 
the probability of cell death was lower (18.84% (95% CI = 16.96-20.84)) in the top 25% of PGM2 
expressing cells compared to the bottom quarter (23.51% (95% CI = 21.45-25.66%) ). No statistically 
significant difference was detected for the early exponential phase population. Statistics were computed 
from using a binomial test (N=1608 in each quartile, error bars reflect 95% confidence interval).
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Figure S4. Related to Figure 4 

Covariance measurements reveal the modular regulatory structure of the cell.  (A) Go term enrichment 
analysis identifies three major functional clusters:  Response to Stress, Mitochondrial regulation, and 
Cellular Amino Acid Biosynthesis  (b) Enrichment of transcription factor binding sites in the promoters 
of genes featured across the three groups  (c) Variance explained by principal components of covariance 
data plotted against the number of components. Much of the structure of the dataset can be explained by 5 
principal components.  All p-values are calculated using a hypergeometic test (N=182). 
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Figure S5. Related to Figure 5 

Overexpression of PDE2 results in distinct diagnostic patterns of covariance between the MSN2 sensitive 
gene PGM2 and amino acid biosynthesis gene ARG4.  (A) Graded inhibition of PKA by overexpression 
of PDE2 results in non-linear increases in covariance between ARG4 and PGM2, and PGM2 and HSP12.  
Error bars represent standard Error of triplicate measurements. 


