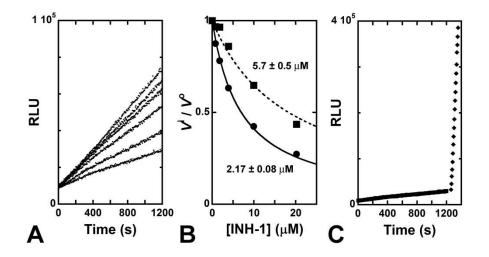
Luciferase-based assay for adenosine: Application to S-adenosyl-Lhomocysteine hydrolase.

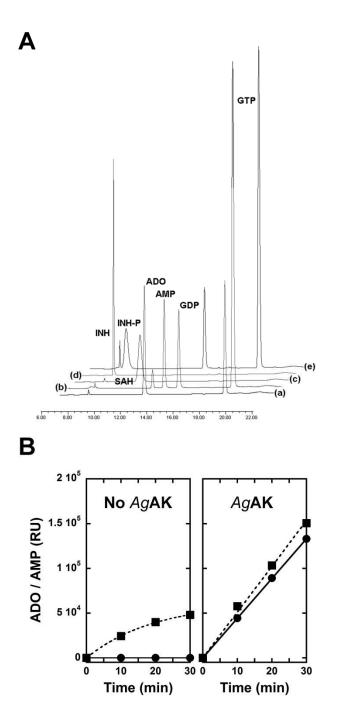
Emmanuel S. Burgos,¹ Shivali A. Gulab,^{1,2} María B. Cassera³ and Vern L. Schramm¹

¹Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, United States, ²Carbohydrate Chemistry Team, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand, ³Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States

Supporting Information


1.	Supplementary Methods	S2
2.	Supplementary Figures (Figures S1-S3)	S3-S5
3.	Supplementary References	S 6

1. Supplementary Methods


Phosphorylation of neplanocin A by *Ag***AK.** Analyses were performed by HPLC on a reverse phase C_{18} column (Luna², 150×4.6 mm, 5 µm, 100 Å; phenomenex) using a protocol previously described;¹ ADO, AMP, GDP, GTP, SAH, INH and INH-P could be easily separated and our analyses demonstrate that INH is a substrate of *Ag*AK according to the formation of GDP.

SAHH inhibition by neplanocin A (INH). In absence of AgAK, two experiments were performed in parallel. The SAHH enzyme mixture (100 mM TRIS-acetate pH 7.7, 0.5 mM PEP, 0.5 mM PPi, 2 mM ammonium chloride, 10 mM MgCl₂, 0.5 mM GTP, 1 mM THP and 250 mU L⁻¹ of SAHH) was rapidly added to an equal volume of SAH (40 μ M; with or without 12 μ M INH). Samples were taken every ten minutes, quenched by ultrafiltration (Biomax UltraFree 0.5 mL centrifugal filter, 10 KD NMWL; Millipore) and analyzed by HPLC to follow ADO production. In presence of the same kinase, two similar experiments were carried; the SAHH mixture (see above; supplied with 60 U L⁻¹ of AgAK) was added to an equal volume of SAH (40 μ M; with or without 12 μ M INH). Every ten minutes, samples were processed as described above to quantify the formation of AMP.

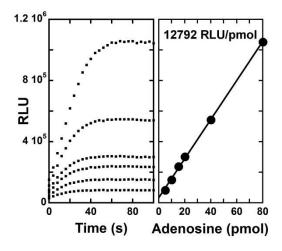

2. Supplementary Figures

Figure S1. K_i evaluation for 5'-deoxy-5'-amino- β -D-adenosine (INH-1). **A**) Light output profile monitored for 20 minutes at 20, 10, 4, 2 and 0.8 μ M of INH-1 (*cf.* Experimental Section). **B**) INH-1 displays a slight slow-onset inhibition (dashed trace) with a K_i^* of 2.17 ± 0.08 μ M. **C**) Assay control for molecules displaying micromolar K_i s. At the end of the inhibition experiment with INH-1 (20 μ M), ADO was added to a 50 μ M final concentration and luminescence was monitored; the coupling enzymes AK/PPDK/FLUC are not inhibited by high concentrations of INH-1 (diamonds signs).

Figure S2. The phopshorylation of neplanocin A by AgAK and its implications for future screenings with our luciferase-based assay. **A**) HPLC analysis of species encountered during the assay. ADO and GTP (Trace a) are converted to AMP and GDP (Trace b) upon addition of AgAK; starting materiel SAH, substrate of SAHH (Trace c) and neplanocin A (Trace d); according to the production of GDP, neplanocin A (INH) is a substrate of AgAK and get phosphorylated into INH-P (Trace e). **B**) Under conditions where AgAK is omitted (left panel), INH (6 μ M) fully inhibits the production of ADO by SAHH (100 nM; solid trace, round signs) in presence of SAH (20 μ M). However, INH gets fully phosphorylated when the kinase is added to the enzyme mixture (30 mU mL⁻¹ final concentration) and there was no inhibition observed (right panel). The AMP production for the control (no inhibitor; dashed line, square signs) and the measure experiments (with inhibitor; solid line, round signs) are nearly identical.

Figure S3. Effect of DMSO on the chemiluminescence output. A new ADO calibration was established in presence of DMSO (1.75%, v/v) using the typical experimental conditions; the linear response display the same sensitivity as our previous calibration experiment where DMSO was omitted (12792 RLU pmol^{-1} vs. 12570 RLU pmol^{-1}). Thus, the coupling enzymes AK/PPDK/FLUC are not affected by this organic solvent.

3. Supplementary References

(1) Burgos, E. S.; Schramm, V. L. *Biochemistry* **2008**, *47*, 11086-11096.